Skip to main content
Log in

Gain-switched semiconductor laser amplifier as an ultrafast dynamical optical gate

  • Photonic Switches for Lasers and Optical Processors II
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A gain-switched semiconductor laser is shown to act as an optical gate with picosecond resolution and amplification for light pulses from another laser source. The amplification mechanism and the gate width change qualitatively when the gate laser undergoes a transition from a pumping rate slightly below the dynamic laser threshold to slightly above the dynamic threshold. If the gate laser is pumped below but close to its dynamical threshold, unsaturated amplification of an external signal pulse occurs over a delay time range between the external optical pulse and the electrical driving pulse of about 100–200 ps which is equivalent to the optical gate width. The signal amplification is observed to increase by two orders of magnitude and the gate width decreases by one order of magnitude if the gate laser is pumped slightly above the dynamical threshold. Amplification then occurs for input signals injected much earlier. A detailed theory of coherent, time-dependent amplification including the nonlinear dynamics of the semiconductor laser is shown to account for the observations. Both amplification regimes, below and above threshold, are reproduced in the numerical simulations. The extremely short and highly sensitive gate range above threshold is identified as being due to the gain maximum related with the first relaxation oscillation of the laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Simon: J. Opt. Commun.4, 51 (1983)

    Google Scholar 

  2. T. Mukai, Y. Yamamoto, T. Kimura: InSemiconductors and Semimetals, ed. by W.T. Tsang (Academic, Orlando 1985) Vol. 22, Part E, pp. 265–319

    Google Scholar 

  3. T. Mukai, Y. Yamamoto, T. Kimura: Rev. Electr. Commun. Labs.31, 340 (1983)

    Google Scholar 

  4. M.J. Adams, J.V. Collins, I.D. Henning: IEE Proc.132, 58 (1985)

    Google Scholar 

  5. D. Marcuse: IEEE J. QE-19, 63 (1983)

    Google Scholar 

  6. J. Buus, B. Plastow: IEEE J. QE-21, 614 (1985)

    Google Scholar 

  7. J. Hegarty, K.A. Jackson: Appl. Phys. Lett.45, 1314 (1984)

    Google Scholar 

  8. M. Ikeda: IEEE J. QE-19, 157 (1983)

    Google Scholar 

  9. B.C. Johnson, A. Mooradian: Appl. Phys. Lett.49, 1135 (1986)

    Google Scholar 

  10. W. Lenth: Opt. Lett.9, 396 (1984)

    Google Scholar 

  11. K. Ketterer, E.H. Böttcher, D. Bimberg: Appl. Phys. Lett.50, 1471 (1987)

    Google Scholar 

  12. E. Schöll: IEEE J. QE-24 (Feb. 1988)

  13. D. Bimberg, K. Ketterer, E.H. Böttcher, E. Schöll: Int'l. J. Electron.60, 23 (1986)

    Google Scholar 

  14. D.E. Ackley, G. Hom: Appl. Phys. Lett.42, 653 (1983)

    Google Scholar 

  15. E.H. Böttcher, K. Ketterer, D. Bimberg: J. Appl. Phys. (Jan. 1988)

  16. E. Schöll, D. Bimberg, H. Schumacher, P.T. Landsberg: IEEE J. QE-20, 394 (1984)

    Google Scholar 

  17. K.Y. Lau, A. Yariv: InSemiconductors and Semimetals, ed. by W.T. Tsang (Academic, Orlando 1985) Vol. 22, Part B pp. 70–152

    Google Scholar 

  18. H. Haug: Phys. Rev.184, 338 (1969)

    Google Scholar 

  19. D.T. Cassidy: Appl. Opt.22, 3321 (1983)

    Google Scholar 

  20. G.H.B. Thompson:Physics of Semiconductor Laser Devices (Wiley, London 1980)

    Google Scholar 

  21. E. Schöll:Nonequilibrium Phase Transitions in Semiconductors, Springer Series in Synergetics, Vol.35 (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöll, E., Ketterer, K., Böttcher, E.H. et al. Gain-switched semiconductor laser amplifier as an ultrafast dynamical optical gate. Appl. Phys. B 46, 69–77 (1988). https://doi.org/10.1007/BF00698655

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00698655

PACS

Navigation