Skip to main content
Log in

Efficient production of13C2F4 in the infrared laser photolysis of CHClF2

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report the isotopically selective decomposition of chlorodifluoromethane. Chlorodifluoromethane is used industrially in high volume for the production of tetrafluoroethylene and its polymers; thereby it is an attractive working substrate for a medium scale isotope separation process, both in terms of its price and availability.

We have studied the infrared multiphoton decomposition of carbon-13 substituted chlorodifluoromethane molecules present at their natural abundance (1.11%). A well defined CO2 laser pulse (80 ns FWHM) was used and both the yield of carbon-13 enriched product and the net absorption of laser radiation were measured. These measurements were made as a function of substrate pressure (10-800 Torr), CO2 laser line (9P 12–9P 32) and fluence (2–8 J cm−2) and were used to determine the energy expenditure per carbon atom produced (ε) at specified product carbon-13 content in the range 30%–96%. The results of these parametric studies were interpreted in terms of the kinetics of multiphoton absorption and dissociation, and allowed an initial optimization of the experimental conditions to minimize ε.

Optimum results were obtained at 1046.9 cm−1, 69 cm−1 to the red of the12CHClF2 v 9 band center. Irradiation of 100 Torr of chlorodifluoromethane at 3.5 J cm−2 gave tetrafluoroethylene containing 50% carbon-13 for an absorption of 140 photons (0.017 keV) per carbon atom produced. This efficiency compares favourably with existing carbon-13 enrichment technologies and would require an absorption pathlength of only 2 m to absorb half the incident photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Marling, I.P. Herman, S.J. Thomas: J. Chem. Phys.72, 5603–5634 (1980)

    Google Scholar 

  2. M. Drouin, M. Gauthier, R. Pilon, P.A. Hackett, C. Willis: Chem. Phys. Lett.60, 16–18 (1978)

    Google Scholar 

  3. W.S. Nip, M. Drouin, P.A. Hackett, C. Willis: J. Phys. Chem.84, 932–935 (1980)

    Google Scholar 

  4. P.A. Hackett, C. Willis, M. Gauthier: J. Chem. Phys.71, 2682–2692 (1979)

    Google Scholar 

  5. J. Davis, M. Feld, C.P. Robinson, J.I. Steinfeld, N. Turro, W.S. Watt, J.T. Yardley:Laser Photochemistry and Diagnostics; Recent Advances and Future Prospects, (National Science Foundation, USA, n.d.) (Report on a NSF/DoE Seminar for Government Agency Representatives, 4–5 June 1979) p. 41

  6. P.A. Hackett, M. Gauthier, W.S. Nip, C. Willis: J. Phys. Chem.85, 1147–1152 (1981)

    Google Scholar 

  7. J.G. Black, E. Yablonovitch, N. Bloembergen, S. Mukamel: Phys. Rev. Lett.38, 1131–1134 (1977)

    Google Scholar 

  8. P.A. Hackett, M. Gauthier, C. Willis, R. Pilon: J. Chem. Phys.71, 546–548 (1979)

    Google Scholar 

  9. M. Gauthier, C. Willis, P.A. Hackett: Can. J. Chem.58, 913–917 (1980)

    Google Scholar 

  10. M. Gauthier, W.S. Nip, P.A. Hackett, C. Willis: Chem. Phys. Lett.69, 372–374 (1980)

    Google Scholar 

  11. M. Gauthier, P.A. Hackett, C. Willis: Chem. Phys.45, 39–46 (1980)

    Google Scholar 

  12. V.M. Bagratashvili, V.S. Doljikov, V.S. Letokhov, E.A. Ryabov: Appl. Phys.20, 231–235 (1979)

    Google Scholar 

  13. M. Gauthier, C.G. Cureton, P.A. Hackett, C. Willis: to be published

  14. D.E. Miligan, M.E. Jacox, J.H. McAuley, C.E. Smith: J. Mol. Spectrosc.45, 377–403 (1973)

    Google Scholar 

  15. E.K. Plyler, W.S. Benedict: J. Res. Natl. Bur. Stand.47, 202–220 (1951)

    Google Scholar 

  16. L. Andrews, F.T. Prochaska: J. Phys. Chem.83, 824–831 (1979)

    Google Scholar 

  17. Aa.S. Sudbo, P.A. Schulz, E.R. Grant, Y.R. Shen, Y.T. Lee: J. Chem. Phys.68, 1306–1307 (1978)

    Google Scholar 

  18. R. Duperrex, H. van den Bergh: J. Chem. Phys.71, 3613–3619 (1979)

    Google Scholar 

  19. R.I. Martinez, R.H. Huie, J.T. Herron, W. Braun: J. Phys. Chem.84, 2344–2347 (1980)

    Google Scholar 

  20. K.P. Schug, H.Gg. Wagner, F. Zabel: Ber. Bunsenges. Phys. Chem.83, 167–175 (1979)

    Google Scholar 

  21. R.C. Slater, J.H. Parks: Chem. Phys. Lett.60, 275–278 (1979)

    Google Scholar 

  22. W.S. Nip, P.A. Hackett, C. Willis: Can. J. Chem.59, 2703–2707 (1981)

    Google Scholar 

  23. E. Grunwald, K.J. Olszyna: Laser Focus12, No 6, 41–45 (1976)

    Google Scholar 

  24. A.O. Nier: Phys. Rev.57, 30–34 (1940)

    Google Scholar 

  25. R.A. Schwind: Chem. Process Eng.50, 75–78 (1969)

    Google Scholar 

  26. D. Stachewski: Chemie Technik4, 269–280 (1975)

    Google Scholar 

  27. J.B. Marling: J. Chem. Phys.66, 4200–4225 (1977)

    Google Scholar 

  28. W. Rudolph, J. Massonne: Ger. Offen. Patent. 2,026, 188 (9 Dec. 1971)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Issued as NRCC 20112

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier, M., Cureton, C.G., Hackett, P.A. et al. Efficient production of13C2F4 in the infrared laser photolysis of CHClF2 . Appl. Phys. B 28, 43–50 (1982). https://doi.org/10.1007/BF00693891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00693891

PACS

Navigation