Skip to main content
Log in

Laboratory scale-up of two-stage laser chemistry separation of13C from CF2HCl

  • Invited Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The laboratory scale-up of a two-stage laser enrichment process for carbon isotopes, involving infrared multiphoton dissociation of freon-22, is described. Unmodified commercial equipment and materials were used. An initial study of the effect of fluence, laser frequency, freon-22 pressure and pressure of argon, nitrogen and trifluoromethyl chloride was made in short irradiation cells (constant fluence) in order to define optimum process parameters. The process was then scaled to higher throughput in longer cells (1–5 m) in which compensation for beam-energy depletion by absorption was made by reduction in the beam area by focussing. From the scale-up experiments, measurements of yield and enrichment of the tetrafluoroethylene product gave demonstrated production rates. These, coupled with measurements of the absorption, allowed extrapolation to production rates assuming total utilization of the available output energy.

Using a 100 W TEA CO2 laser (10 J, 10 Hz) we have demonstrated production rates of 0.20 g h−1 carbon-12 at 99.99% carbon-12, 11 mg h−1 carbon-13 at 72% carbon-13 and 2 kg per annum carbon-13 at 50%. Energy absorption measurements imply a capability to produce 3 kg per annum carbon-13 at over 95% carbon-13 in a two-stage process.

The apparatus was used to produce gram quantities of carbon-13 depleted freon-22 (99.99% carbon-12). A comparison of the infrared multiphoton dissociation of this material with that of natural freon-22 (1.11% carbon-13) showed that under the conditions required to give selective dissociation of13CF2HCl that12CF2HCl was excited as a result of a dominantly radiative interaction and that collisional transfer from13CF2HCl molecules played a minor role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Clark, Y. Haas, P.L. Houston, C.B. Moore: Chem. Phys. Lett.35, 82–85 (1975)

    Google Scholar 

  2. J.B. Marling: Opt. Commun.18, 36 (1976)

    Google Scholar 

  3. J.B. Marling: J. Chem. Phys.66, 4200–4225 (1976)

    Google Scholar 

  4. R.E.M. Hedges, C.M. Moore: Nature276, 255–257 (1978)

    Google Scholar 

  5. R.E.M. Hedges, P. Ho, C.B. Moore: Appl. Phys. B23, 25–32 (1980)

    Google Scholar 

  6. R.R. Karl Jr., K.K. Innes: Chem. Phys. Lett.36, 275–279 (1975)

    Google Scholar 

  7. J.L. Lyman, S.D. Rockwood: J. Appl. Phys.47, 595–601 (1976)

    Google Scholar 

  8. J.J. Ritter, S.M. Freund: J. Chem. Soc. Chem. Commun. 811–813 (1976)

  9. J.J. Ritter: J. Am. Chem. Soc.100, 2441–2444 (1978)

    Google Scholar 

  10. P. Fettweis, M. Nève de Mévergnies: J. Appl. Phys.49, 5699–5702 (1978)

    Google Scholar 

  11. W.S. Nip, P.A. Hackett, C. Willis: Can. J. Chem.59, 2703–2707 (1981)

    Google Scholar 

  12. M. Nève de Mévergnies: Appl. Phys. Lett.34, 853–854 (1979)

    Google Scholar 

  13. M.C. Gower, K.W. Billman: Appl. Phys. Lett.30, 514–516 (1977)

    Google Scholar 

  14. J.-S.J. Chou, E.R. Grant: J. Chem. Phys.74, 5679–5685 (1981)

    Google Scholar 

  15. D.S. King, J.C. Stephenson: J. Am. Chem. Soc.100, 7151–7155 (1978)

    Google Scholar 

  16. R.V. Ambartzumian, Yu.A. Gorokhov, V.S. Letokhov, G.N. Makarov, A.A. Puretzki: Phys. Lett.56 A, 183–185 (1976)

    Google Scholar 

  17. R.V. Ambartzumian, Yu.A. Gorokhov, V.S. Letokhov, A.A. Puretzki: JETP Lett.22, 177–178 (1975)

    Google Scholar 

  18. R.V. Ambartzumian, B.I. Vasil'ev, A.Z. Grasyuk, A.P. Dyad'kin, V.S. Letokhov, N.P. Furzikov: Sov. J. Quantum Electron.8, 1015–1018 (1978)

    Google Scholar 

  19. R.V. Ambartzumian, N.P. Furzikov, V.S. Letokhov, A.P. Dyad'kin, A.Z. Grasyuk, B.I. Vasil'yev: Appl. Phys.15, 27–30 (1978)

    Google Scholar 

  20. S. Bittenson, P.L. Houston: J. Chem. Phys.67, 4819–4824 (1977)

    Google Scholar 

  21. M. Gauthier, P.A. Hackett, M. Drouin, R. Pilon, C. Willis: Can. J. Chem.56, 2227–2228 (1978)

    Google Scholar 

  22. I.N. Knyazev, Yu.A. Kudriavtzev, N.P. Kuzmina, V.S. Letokhov, A.A. Sarkisian: Appl. Phys.17, 427–429 (1978)

    Google Scholar 

  23. M. Drouin, M. Gauthier, R. Pilon, P.A. Hackett, C. Willis: Chem. Phys. Lett.60, 16–18 (1978)

    Google Scholar 

  24. V.N. Bagratashvili, V.S. Dolzhikov, V.S. Letokhov, E.A. Ryabov: Sov. Tech. Phys. Lett.4, 475–477 (1978)

    Google Scholar 

  25. I.N. Knyazev, Yu.A. Kudryavtsev, N.P. Kuz'mina, V.S. Letokhov: Sov. Phys. JETP49, 650–656 (1979)

    Google Scholar 

  26. M. Gauthier, P.A. Hackett, C. Willis: Chem. Phys.45, 39–46 (1980)

    Google Scholar 

  27. V.N. Bagratashvili, V.S. Doljikov, V.S. Letokhov, E.A. Ryabov: Appl. Phys.20, 231–235 (1979)

    Google Scholar 

  28. M. Gauthier, W.S. Nip, P.A. Hackett, C. Willis: Chem. Phys. Lett.69, 372–374 (1980)

    Google Scholar 

  29. V.N. Bagratashvili, V.S. Dolzhikov, V.S. Letokhov, A.A. Makarov, E.A. Ryabov, V.V. Tyakht: Sov. Phys. JETP50, 1075–1083 (1979)

    Google Scholar 

  30. E. Borsella, R. Fantoni, A. Giardini-Guidoni, G. Sanna: Chem. Phys. Lett.72, 25–28 (1980)

    Google Scholar 

  31. S.K. Sarkar, V. Parthasarathy, A. Pandey, K.V.S. Rama Rao, J.P. Mittal: Chem. Phys. Lett.78, 479–482 (1981)

    Google Scholar 

  32. V.S. Doljikov, Yu.R. Kolomisky, E.A. Ryabov: Chem. Phys. Lett.80, 433–438 (1981)

    Google Scholar 

  33. C.N. Plum, P.L. Houston: Appl. Phys.24, 143–146 (1981)

    Google Scholar 

  34. M. Nève de Mévergnies: Appl. Phys.25, 275–282 (1981)

    Google Scholar 

  35. P.A. Hackett, E. Weinberg, M. Gauthier, C. Willis: Chem. Phys. Lett.82, 89–91 (1981)

    Google Scholar 

  36. H. Johansen, A. Grässer: Isotopenpraxis18, 64–70 (1982)

    Google Scholar 

  37. C. Ungureanu, V. Mercea, V. Cosma: Rev. Chim. (Bucharest)33, 391–397 (1982)

    Google Scholar 

  38. G.I. Abdushelishvili, O.N. Avatkov, V.I. Andryushchenko, V.N. Bagratashvili, A.B. Bakhtadze, V.M. Vetsko, V.S. Dolzhikov, G.G. Esadze, V.S. Letokhov, E.A. Ryabov, G.I. Tkeshelashvili: Sov. Tech. Phys. Lett.5, 350–351 (1979)

    Google Scholar 

  39. G.I. Abdushelishvili, O.N. Avatkov, A.B. Bakhtadze, V.M. Vetsko, G.I. Tkeshelashvili, V.I. Tomilina, V.N. Fedoseev, Yu.R. Kolomiiskii: Sov. J. Quantum Electron.11, 326–328 (1981)

    Google Scholar 

  40. O.N. Avatkov, V.M. Vetsko, G.G. Esadze, A.V. Kaminskii, G.I. Tkeshelashvili: Sov. J. Quantum. Electron.11, 668–670 (1981)

    Google Scholar 

  41. E. Borsella, C. Clementi, R. Fantoni, A. Giardini-Guidoni, A. Palucci: Nuovo Cimento73 A, 364–372 (1983)

    Google Scholar 

  42. P.A. Hackett, M. Gauthier, C. Willis, R. Pilon: J. Chem. Phys.71, 546–548 (1979)

    Google Scholar 

  43. W. Fuss, W.E. Schmid: Ber. Bunsenges. Phys. Chem.83, 1148–1150 (1979)

    Google Scholar 

  44. G.I. Abdushelishvili, O.N. Avatkov, V.N. Bagratashvili, V.Yu. Baranov, A.B. Bakhtadze, E.P. Velikhov, V.M. Vetsko, I.G. Gverdtsiteli, V.S. Dolzhikov, G.G. Esadze, S.A. Kazakov, Yu.R. Kolomiiskii, V.S. Letokhov, S.V. Pigul'skii, V.D. Pis'mennyi, E.A. Ryabov, G.I. Tkeshelashvili: Sov. J. Quantum Electron.12, 459–469 (1982)

    Google Scholar 

  45. V.Yu. Baranov: IEEE J. QE-19, 1577–1587 (1983)

    Google Scholar 

  46. O.N. Avatkov, A.B. Bakhtadze, V.Yu. Baranov, V.S. Doljikov, I.G. Gverdtsiteli, S.A. Kazakov, V.S. Letokhov, V.D. Pismmenyi, E.A. Ryabov, V.M. Vetsko: Appl. Opt.23, 26–29 (1984)

    Google Scholar 

  47. H. Kojima, T. Fukumi, S. Nakajima, Y. Maruyama, K. Kosasa: Appl. Phys. B30, 143–148 (1983)

    Google Scholar 

  48. H. Kojima, T. Fukumi, S. Nakajima, Y. Maruyama, K. Kosasa: Chem. Phys. Lett.95, 614–617 (1983)

    Google Scholar 

  49. P.A. Hackett, C. Willis, M. Gauthier: J. Chem. Phys.71, 2682–2692 (1979)

    Google Scholar 

  50. P.A. Hackett, M. Gauthier, C. Willis, M. Drouin: IEEE J. QE-16, 143–147 (1980)

    Google Scholar 

  51. P.A. Hackett, V. Malatesta, W.S. Nip, C. Willis, P.B. Corkum: J. Phys. Chem.85, 1152–1155 (1981)

    Google Scholar 

  52. P.A. Hackett, M. Gauthier, W.S. Nip, C. Willis: J. Phys. Chem.85, 1147–1152 (1981)

    Google Scholar 

  53. P.A. Hackett, C. Willis, W.S. Nip: J. Am. Chem. Soc.103, 682 (1981)

    Google Scholar 

  54. W.S. Nip, M. Drouin, P.A. Hackett, C. Willis: J. Phys. Chem.84, 932–935 (1980)

    Google Scholar 

  55. A. Yogev, R.M.J. Benmair: Chem. Phys. Lett.63, 558–561 (1979)

    Google Scholar 

  56. K.V. Reddy, M.J. Berry: Chem. Phys. Lett.72, 29–33 (1980)

    Google Scholar 

  57. V. Vizhin, Yu. N. Molin, A.K. Petrov, A.R. Sorokin: Appl. Phys.17, 385–391 (1978)

    Google Scholar 

  58. D.S.Y. Hsu, T.J. Manuccia: Chem. Phys. Lett.76, 16–20 (1980)

    Google Scholar 

  59. R.C. Bergman, G.F. Homicz, J.W. Rich, G.L. Wolk: J. Chem. Phys.78, 1281–1292 (1983)

    Google Scholar 

  60. T.R. Loree, J.H. Clark, K.B. Butterfield, J.L. Lyman, R. Engleman Jr.: J. Photochem.10, 359–364 (1979)

    Google Scholar 

  61. P.F. Zittel, L.A. Darnton, D.D. Little: J. Chem. Phys.79, 5991–6005 (1983)

    Google Scholar 

  62. M. Gauthier, C.G. Cureton, P.A. Hackett, C. Willis: Appl. Phys. B28, 43–50 (1982)

    Google Scholar 

  63. M. Gauthier, A. Outhouse, Y. Ishikawa, K.O. Kutschke, P.A. Hackett: Appl. Phys. B35, 173–177 (1984)

    Google Scholar 

  64. J. Moser, P. Morand, R. Duperrex, H. van den Bergh: Chem. Phys.79, 277–288 (1983)

    Google Scholar 

  65. C. Willis, A.J. Alcock: private communication

  66. K.O. Kutschke, M. Gauthier, P.A. Hackett: Chem. Phys.78, 323–330 (1983)

    Google Scholar 

  67. Assuming infinite selectivity. In fact simple analysis shows that γ={(m+1)/exp[ln β/(1−α)]}+{mexp[αlnβ/(1−α)]}−1 wherem is the carbon-12/carbon-13 ratio at natural abundance,m≈89, and α, β, and γ are defined in the text. For β=1691, i.e. 95% carbon-13 residual reactant, we find γ=580, 204, 133, and 96 for α=5, 10, 20, and 100. This analysis illustrates the insensitivity of γ to α in the reactant enrichment approach for α>20

Download references

Author information

Authors and Affiliations

Authors

Additional information

Issued as NRCC 23639

Summer Student 1983, Acadia University, N.S., Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Outhouse, A., Lawrence, P., Gauthier, M. et al. Laboratory scale-up of two-stage laser chemistry separation of13C from CF2HCl. Appl. Phys. B 36, 63–75 (1985). https://doi.org/10.1007/BF00694692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694692

PACS

Navigation