Skip to main content
Log in

Production of highly concentrated 13C by continuous two-stage IRMPD. CBr2F2/HI, CCl2F2/HI, and CBrClF2/HI mixtures

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Difluoromethane CH2F2 containing 90–98% 13C was obtained in the selective IRMPD of mixtures of CBr2F2/HI, CCl2F2/HI, and CBrClF2/HI. In CBr2F2/HI mixtures, the intermediate product CHBrF2 resulting from the reaction between the initial decomposition fragment CBrF2 and HI underwent secondary selective IRMPD to form highly 13C-enriched CH2F2 in continuous laser irradiation. The intermediate product in the mixtures of CCl2F2/HI and CBrClF2/HI was found to be CHClF2, but no significant secondary photodecomposition in CBrClF2/HI mixtures occurred owing to the low absorption cross section of CHClF2 at the adopted laser frequencies and fluences. The observed decomposition probabilities and selectivities under different conditions with respect to laser frequency, fluence, and partial pressures of halogenated difluoromethanes and HI suggest that CBr2F2 is one of the better candidates for practical 13C separation by IRMPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Silicon isotopes. M. Kamioka, S. Arai, Y. Ishikawa, S. Isomura, N. Takamiya: Chem. Phys. Lett. 119, 357 (1985)

    Google Scholar 

  2. M. Kamioka, Y. Ishikawa, H. Kaetsu, S. Isomura, S. Arai: J. Phys. Chem. 90, 5727 (1986)

    Google Scholar 

  3. Sulfur isotopes. V.Yu. Baranov, E.P. Velikhov, S.A. Kazakov, Yu.R. Kolomiiskii, V.S. Letokhov, V.D. Pis'mennyi, E.A. Ryabov, A.I. Starodubtsev: Sov. J. Quant. Electron. 9, 486 (1979)

    Google Scholar 

  4. G.I. Abdushelishvili, O.N. Avatkov, V.N. Bagratashvili, V.Yu. Baranov, A.B. Bakhtadze, E.P. Velikhov, V.M. Vetsko, I.G. Gverdtsiteli, V.S. Dolzhikov, G.G. Esadze, S.A. Kazakov, Yu.R. Kolomiiskii, V.S. Letokhov, S.V. Pigul'skii, V.D. Pis'mennyi, E.A. Ryabov, G.I. Tkeshelashvili: Sov. J. Quant. Electron. 12, 459 (1982)

    Google Scholar 

  5. A. Outhouse, P. Lawrence, M. Gauthier, P.A. Hackett: Appl. Phys. B36, 63 (1985)

    Google Scholar 

  6. M. Drouin, M. Gauthier, R. Pilon, P.A. Hackett, C. Willis: Chem. Phys. Lett. 60, 16 (1978)

    Google Scholar 

  7. T. Watanabe, T. Oyama, O. Hayashi, Y. Ishikawa, T. Ishii, S. Arai: Nippon Kagaku Kaishi, 1517 (1984)

  8. C.N. Plum, P.L. Houston: Appl. Phys. 24, 143 (1981)

    Google Scholar 

  9. H. Kojima, T. Fukumi, S. Nakajima, Y. Maruyama, K. Kosasa: Chem. Phys. Lett. 95, 614 (1983)

    Google Scholar 

  10. W. Fuss, W.E. Schmid: Ber. Bunsenges. Phys. Chem. 83, 1148 (1979)

    Google Scholar 

  11. V.Yu. Baranov: IEEE J. Quant. Electron. QE-19, 1577 (1983)

    Google Scholar 

  12. M. Gauthier, C.G. Cureton, P.A. Hackett, C. Willis: Appl. Phys. B28, 43 (1982)

    Google Scholar 

  13. M. Gauthier, A. Outhouse, Y. Ishikawa, K.O. Kutschke, P.A. Hackett: Appl. Phys. B35, 173 (1984)

    Google Scholar 

  14. S. Arai, T. Watanabe, Y. Ishikawa, T. Oyama, O. Hayashi, T. Ishii: Chem. Phys. Lett. 112, 224 (1984)

    Google Scholar 

  15. P.H. Ma, K. Sugita, S. Arai: Chem. Phys. Lett. 137, 590 (1987)

    Google Scholar 

  16. A.L. Henne: J. Am. Chem. Soc. 59, 1200 (1937)

    Google Scholar 

  17. R.J.S. Morrison, R.F. Loring, R.L. Farley, E.R. Grant: J. Chem. Phys. 75, 148 (1981)

    Google Scholar 

  18. J.C. Stephenson, D.S. King: J. Chem. Phys. 69, 1485 (1978)

    Google Scholar 

  19. Aa.S. Sudbø, P.A. Schulz, E.R. Grant, Y.R. Shen, Y.T. Lee: J. Chem. Phys. 70, 912 (1979)

    Google Scholar 

  20. A. Palm, F.L. Voelz, A.G. Meister: J. Chem. Phys. 23, 726 (1955)

    Google Scholar 

  21. J.J. Orlando, J. Reid, D.R. Smith: Chem. Phys. Lett. 141, 423 (1987)

    Google Scholar 

  22. R.A. Cox, R.F. Simmons: J. Chem. Soc. (B) 19, 1625 (1971)

    Google Scholar 

  23. H.H. Claassen: J. Chem. Phys. 22, 50 (1954)

    Google Scholar 

  24. J.J. Ritter: J. Am. Chem. Soc. 100, 2441 (1978)

    Google Scholar 

  25. D.S. King, J.C. Stephenson: J. Am. Chem. Soc. 100, 7151 (1978)

    Google Scholar 

  26. J.L. Lyman, S.D. Rockwood: J. Appl. Phys. 47, 595 (1976)

    Google Scholar 

  27. P. Fettweis, M. Neve de Mevergnies: J. Appl. Phys. 49, 5699 (1978)

    Google Scholar 

  28. W.S. Nip, P.A. Hackett, C. Willis: Can. J. Chem. 59, 2703 (1981)

    Google Scholar 

  29. J.J. Chou, E.R. Grant: J. Chem. Phys. 74, 5679 (1981)

    Google Scholar 

  30. D.S. King, J.C. Stephenson: Chem. Phys. Lett. 51, 48 (1977)

    Google Scholar 

  31. R.J.S. Morrison, E.R. Grant: J. Chem. Phys. 71, 3537 (1979)

    Google Scholar 

  32. J.G. McLaughlin, M. Poliakoff, J.J. Turner: J. Mol. Struct. 82, 51 (1982)

    Google Scholar 

  33. Aa.S. Sudbø, P.A. Schulz, Y.R. Shen, Y.T. Lee: J. Chem. Phys. 69, 2312 (1978)

    Google Scholar 

  34. M.Z. El-Sabban, B.J. Zwolinski: J. Molec. Spectrosc. 22, 23 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, P.H., Sugita, K. & Arai, S. Production of highly concentrated 13C by continuous two-stage IRMPD. CBr2F2/HI, CCl2F2/HI, and CBrClF2/HI mixtures. Appl. Phys. B 49, 503–512 (1989). https://doi.org/10.1007/BF00324949

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324949

PACS

Navigation