Skip to main content
Log in

13C-selective two-stage IRMPD of mixtures of CHClF2 and HI

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The 13C-selective infrared multiple-photon decomposition (IRMPD) of mixtures of CHClF2 and HI was examined in collimated and focused beam geometries using a CO2TEA laser. The carbon-containing products were CH2F2 and CHF2I. The former product showed remarkably high 13C atom concentrations beyond 95% under selected experimental conditions, while the latter contained 25% or less. The observed results can be explained satisfactorily in terms of the consecutive two-stage IRMPD process occurring in a single irradiation procedure, where the first-stage IRMPD of natural CHClF2 produces 13C-enriched CHF2I via the insertion of the initial decomposition fragment CF2 into HI, and the second stage is the subsequent 13C-selective IRMPD of the CHF2I to form a CHF2 radical and an I atom. The CHF2 radical reacts with HI to form CH2F2. Decomposition probabilities of 12CHClF2 and 13CHClF2 were measured as a function of laser fluence to optimize enrichment conditions. Furthermore, partial decomposition probabilities or relative production yields were measured as functions of laser line, pressure of HI, and pressure of CHClF2. Both stages showed high 13C selectivities in the irradiation with the laser radiation around 1040 cm−1 and at fluences below 4 J cm−2. This mixture is one of the most promising chemical systems for the production of highly enriched 13C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.S. Letokhov: Nonlinear Laser Chemistry. Springer Ser. Opt. Vol. 4 (Springer, Berlin, Heidelberg 1983)

    Google Scholar 

  2. D.W. Lupo, M. Quack: Chem. Rev. 87, 181 (1987)

    Google Scholar 

  3. V.Yu. Baranov, E.P. Velikhov, S.A. Kazakov, Yu.R. Kolomiiskii, V.S. Letokhov, V.D. Pis'mennyi, E.A. Ryabov, A.I. Starodubtsev: Sov. J. Quantum. Electron. 9, 486 (1979)

    Google Scholar 

  4. G.I. Abdushelishvili, O.N. Avatkov, V.N. Bagratashvili, V.Yu. Baranov, A.B. Bakhtadze, E.P. Velikhov, V.M. Vetsko, I.G. Gverdtsiteli, V.S. Dolzhikov, G.G. Esadze, S.A. Kazakov, Yu.R. Kolomiiskii, V.S. Letokhov, S.V. Pigul'skii, V.D. Pis'mennyi, E.A. Ryabov, G.I. Tkeshelashvili: Sov. J. Quantum Electron. 12, 459 (1982)

    Google Scholar 

  5. V.Yu. Baranov: IEEE J. QE-19, 1577 (1983)

    Google Scholar 

  6. M. Gauthier, C.G. Cureton, P.A. Hackett, C. Willis: Appl. Phys. B 28, 43 (1982)

    Google Scholar 

  7. M. Gauthier, A. Outhouse, Y. Ishikawa, K.O. Kutschke, P.A. Hackett: Appl. Phys. B 35, 173 (1984)

    Google Scholar 

  8. A. Outhouse, P. Lawrence, M. Gauthier, P.A. Hackett: Appl. Phys. B 36, 63 (1985)

    Google Scholar 

  9. M. Kamioka, S. Arai, Y. Ishikawa, S. Isomura, N. Takamiya: Chem. Phys. Lett. 119, 357 (1985)

    Google Scholar 

  10. M. Kamioka, Y. Ishikawa, H. Kaetsu, S. Isomura, S. Arai: J. Phys. Chem. 90, 5727 (1986)

    Google Scholar 

  11. T. Watanabe, T. Oyama, O. Hayashi, Y. Ishikawa, T. Ishii, S. Arai: Nihon Kagaku Kaishi 1517 (1984)

  12. S. Arai, T. Watanabe, Y. Ishikawa, T. Oyama, O. Hayashi, T. Ishii: Chem. Phys. Lett. 112, 224 (1984)

    Google Scholar 

  13. P.H. Ma, K. Sugita, S. Arai: Chem. Phys. Lett. 137, 590 (1987)

    Google Scholar 

  14. S. Arai, K. Sugita, P.H. Ma, Y. Ishikawa, H. Kaetsu, S. Isomura: Chem. Phys. Lett. 151, 516 (1988)

    Google Scholar 

  15. S. Arai, K. Sugita, P.H. Ma, Y. Ishikawa, H. Kaetsu, S. Isomura: Appl. Phys. B 48, 427 (1989)

    Google Scholar 

  16. P.H. Ma, K. Sugita, S. Arai: Appl. Phys. B (in press)

  17. Aa.S. Sudbø, P.A. Schulz, Y.R. Shen, Y.T. Lee: J. Chem. Phys. 69, 2312 (1978)

    Google Scholar 

  18. T. Smail, F.S. Rowland: J. Phys. Chem. 74, 1866 (1970)

    Google Scholar 

  19. L. Andrews, F.T. Prochaska: J. Phys. Chem. 83, 824 (1979)

    Google Scholar 

  20. W.J.R. Tyerman: Trans Faraday Soc. 65, 1188 (1969)

    Google Scholar 

  21. D.S.Y. Hsu, M.E. Wustead, M.C. Lin: ACS Symp. Ser. No. 66, 128 (1978)

  22. R.I. Martinez, R.E. Hire, J.T. Herron, W. Braun: J. Phys. Chem. 84, 2344 (1980)

    Google Scholar 

  23. J.W. Edwards, P.A. Small: Nature 202, 1329 (1964)

    Google Scholar 

  24. G.R. Barnes, R.A. Cox, R.F. Simmons: J. Chem. Soc. 1176 (1971)

  25. W. Fuss: Chem. Phys. 36, 135 (1979)

    Google Scholar 

  26. M. Gauthier, W.S. Nip, P.A. Hackett, C. Willis: Chem. Phys. Lett. 69, 372 (1980)

    Google Scholar 

  27. A.V. Evseev, V.S. Letokhov, A.A. Puretzky: Appl. Phys. B 38, 93 (1985)

    Google Scholar 

  28. I. Hanazaki: Appl. Phys. B 26, 111 (1981)

    Google Scholar 

  29. J.S. Francisco, J.I. Steinfeld: Chem. Phys. Lett. 82, 311 (1981)

    Google Scholar 

  30. G.R. Nicol, D.K. Evans, R.D. McAlpine: Appl. Phys. B 39, 29 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, P.H., Sugita, K. & Arai, S. 13C-selective two-stage IRMPD of mixtures of CHClF2 and HI. Appl. Phys. B 50, 385–392 (1990). https://doi.org/10.1007/BF00325091

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325091

PACS

Navigation