Skip to main content
Log in

Ontogenesis of auditory fovea representation in the inferior colliculus of the Sri Lankan rufous horseshoe bat, Rhinolophus rouxi

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

This report describes the ontogenesis of tonotopy in the inferior colliculus (IC) of the rufous horseshoe bat (Rhinolophus rouxi). Horseshoe bats are deaf at birth, but consistent tonotopy with a low-to-high frequency gradient from dorsolateral to ventromedial develops from the 2nd up to the 5th week. The representation of the auditory fovea is established in ventro-mediocaudal parts of the IC during the 3rd postnatal week (Fig. 3). Then, a narrow frequency band 5 kHz in width, comprising 16% of the bat's auditory range, captures 50–60 vol% of the IC (Fig. 3c). However, foveal tuning is 10–12 kHz (1/3 octave) lower than in adults; foveal tuning in females (65–68 kHz) is 2–3 kHz higher than in males (62–65 kHz). Thereafter, foveal tuning increases by 1–1.5 kHz per day up to the 5th postnatal week, when the adult hearing range is established (Figs. 4, 5). The increase of sensitivity and of tuning sharpness of single units also follows a low-to-high frequency gradient (Fig. 6).

Throughout this development the foveal tuning matches the second harmonic of the echolocation pulses vocalised by these young bats. The results confirm the hypothesis of developmental shifts in the frequency-place code for the foveal high frequency representation in the IC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BF :

best frequency

CF :

constant frequency

FM :

frequency modulation

IC :

inferior colliculus

IHC :

inner hair cell;

OHC :

outer hair cell

RR :

Rhinolophus rouxi

References

  • Aitkin LM, Moore DR (1975) Inferior colliculus. II. Development of tuning characteristics and tonotopic organisation in central nucleus of neonatal cat. J Neurophysiol 38:1208–1216

    Google Scholar 

  • Bruns V, Schmieszek E (1980) Cochlear innervation in the greater horseshoe bat, demonstration of an acoustic fovea. Hearing Res 161:29–50

    Google Scholar 

  • Carlier E, Pujol R (1978) Role of inner and outer hair cells encoding sound intensity: an ontogenetic approach. Brain Res 147:174–176

    Google Scholar 

  • Casagrande VA, Condo GJ (1988) The effect of neural activity on the development of layers in the lateral geniculate nucleus. J Neurosci 8:395–416

    Google Scholar 

  • Clopton BM, Winfield JA (1976) Effect of early exposure to patterned sound on unit activity in the rat inferior colliculus. J Neurophysiol 39:1081–1089

    Google Scholar 

  • Cody AR, Russel IJ (1987) The responses of hair cells in the basal turn of the guinea pig cochlea to tones. J Physiol 383:551–569

    Google Scholar 

  • Cody AR, Russel IJ (1988) Acoustically induced hearing loss: Intracellular studies in the guinea pig cochlea. Hearing Res 35:59–70

    Google Scholar 

  • Dallos P, Harris D (1978) Properties of auditory nerve response in absence of outer hair cells. J Neurophysiol 41:365–388

    Google Scholar 

  • Dixon WJ, Mood AM (1946) The statistical sign test. J Am Stat Assoc 41:557–566

    Google Scholar 

  • Echteler SH, Arjmand E, Dallos P (1989) Developmental alteration in the frequency map of the mammalian cochlea. Nature 341:147–149

    Google Scholar 

  • Ehret G (1977) Postnatal development in the acoustic system of the house mouse in the light of developing masked thresholds. J Acoust Soc Am 62:143–148

    Google Scholar 

  • Evans EF (1975) Cochlear nerve and cochlear nucleus. In: Keidel WD, Neff WD (eds) Auditory system. (Handbook of sensory physiology vol 5/2) Springer, Berlin Heidelberg New York, pp 1–108

    Google Scholar 

  • Harris DM, Dallos P (1984) Ontogenetic changes in frequency mapping of a mammalian ear. Science 225:741–743

    Google Scholar 

  • Hyson RL, Ruby JW (1986) Ontogenetic change in the analysis of sound frequency in the infant rat. Dev Psychobiol 20:189–207

    Google Scholar 

  • Irvine DRF (1986) The auditory brainstem. In: Ottoson D (ed) Progress in sensory physiology, vol 7. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kim DO (1985) Functional roles of the inner- and outer-hair-cell subsystems in the cochlea and brainstem. In: Berlin C (ed) Hearing science. College Hill Press, San Diego, pp 241–262

    Google Scholar 

  • Kraus HJ, Aulbach-Kraus K (1981) Morphological changes in the cochlea of the mouse after the onset of hearing. Hearing Res 4:89–102

    Google Scholar 

  • Liberman MC (1982) The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449

    Google Scholar 

  • Lippe WR (1987) Shift of tonotopic organisation in brainstem auditory nuclei of the chicken during late embryonic development. Hearing Res 25:205–208

    Google Scholar 

  • Moore DR, Irvine DRF (1979) The development of some peripheral and central auditory responses in the neonatal cat. Brain Res 162:49–59

    Google Scholar 

  • Peters A (1987) Analyse der Frequenzrepräsentation im Innenohr der echoortenden Fledermaus Hipposideros lankadiva. Dissertation, University of Munich

  • Pujol R, Carlier E, Lenoir M (1980) Ontogenetic approach to inner and outer hair cell function. Hearing Res 2:423–430

    Google Scholar 

  • Retzius G (1884) Das Gehörorgan der Wirbeltiere: II. Das Gehörorgan der Reptilien, der Vögel und der Säugetiere. Samson and Wallin, Stockholm

    Google Scholar 

  • Romand R (1983) Development of the cochlea. In: Romand R (ed) Development of auditory and vestibular systems. Academic, New York, pp 47–88

    Google Scholar 

  • Romand R, Marty R (1975) Postnatal maturation of the cochlear nuclei in the cat: A neurophysiological study. Brain Res 83:225–233

    Google Scholar 

  • Rubel EW, Lippe WR, Ryals BM (1984) Development of the place principle. Ann Otol Rhinol Laryngol 93:609–615

    Google Scholar 

  • Rubel EW, Born DE, Deitch JS, Durham D (1985) Recent advances toward understanding auditory system development. In: Berlin C (ed) Hearing science. College Hill Press, San Diego, pp 109–157

    Google Scholar 

  • Rübsamen R (1987) Ontogenesis of the echolocation system in the rufous horseshoe bat, Rhinolophus rouxi. (Audition and vocalization in early postnatal development). J Comp Physiol A 161:899–913

    Google Scholar 

  • Rübsamen R, Neuweiler G (1987) Postnatal development of frequency maps in the central auditory system of hipposiderid CF-FM bats. In: Elsner N, Creutzfeldt OD (eds) New frontiers in brain research. Proc 15th Göttingen Neurobiol Conf, Thieme, Stuttgart, p 116

    Google Scholar 

  • Rübsamen R, Schäfer M (1990) Audio-vocal interactions during development? Vocalisation in deafened young horseshoe bats vs. audition in vocalisation-impaired bats. J Comp Physiol A 167:771–784

    Google Scholar 

  • Rübsamen R, Neuweiler G, Sripathi K (1988a) Comparative collicular tonotopy in two bat species adapted to movement detection, Hipposideros speoris and Megaderma lyra. J Comp Physiol A 163:271–285

    Google Scholar 

  • Rübsamen R, Schäfer M, Neuweiler G (1988b) Spatial frequency representation in the auditory midbrain of the rufous horseshoe bat Rhinolophus rouxi. In: Elsner N, Creutzfeldt OD (eds) New frontiers in brain research, Proc 15th Göttingen Neurobiol Conf. Thieme, Stuttgart, p 196

    Google Scholar 

  • Rübsamen R, Neuweiler G, Marimuthu G (1989) Ontogenesis of tonotopy in inferior colliculus of a hipposiderid bat reveals postnatal shift in frequency place code. J Comp Physiol A 165:755–769

    Google Scholar 

  • Ryan AF, Woolf NK (1988) Development of tonotopic representation in the mongolian gerbil: a 2-desoxyglucose study. Dev Brain Res 41:61–70

    Google Scholar 

  • Sanes DH, Merickel, Rubel EW (1989) Evidence for an alteration of the tonotopic map in the gerbil cochlea during development. J Comp Neurol 279:436–445

    Google Scholar 

  • Saunders JC, Dolgin KG, Lowry DL (1980) The maturation of frequency selectivity in C57bl/6J mice studied with auditory evoked response tuning curves. Brain Res 187:69–79

    Google Scholar 

  • Schnitzler HU (1968) Die Ultraschall-Ortungslaute der Hufeisenfledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. Z Vergl Physiol 57:376–408

    Google Scholar 

  • Schuller G, Pollak G (1979) Disproportionate frequency representation in the inferior colliculus of Doppler compensating greater horseshoe bats. Evidence for an acoustic fovea. J Comp Physiol 132:47–54

    Google Scholar 

  • Schuller G, Beuter K, Schnitzler HU (1974) Response to frequency shifted artificial echoes in the bat, Rhinolophus ferrumequinum. J Comp Physiol 89:275–286

    Google Scholar 

  • Schuller G, Beuter K, Rübsamen R (1975) Dynamic properties of the compensation system for Doppler shifts in the bat, Rhinolophus ferrumequinum. J Comp Physiol 97:113–125

    Google Scholar 

  • Schweitzer L, Cant NB (1984) Development of the cochlear innervation in the dorsal cochlear nucleus of the hamster. J Comp Neurol 225:228–243

    Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1983) Comparison between the tuning properties of inner hair cells and basilar membrane motion. Hearing Res 10:93–100

    Google Scholar 

  • Sterbing S, Rübsamen R, Schmidt U (1990) Auditory midbrain frequency-place code and audio-vocal interaction during postnatal development in the phyllostomid bat, Carollia perspicillata. In: Elsner N, Roth G (eds) Gehirn — Wahrnehmung — Kognition. Proc 18th Göttingen Neurobiol Conf. Thieme, Stuttgart, p 140

    Google Scholar 

  • Tokimoto T, Osako S, Matsuura S (1977) Development of auditory evoked cortical and brain stem responses during the early postnatal period in the rat. Osaka City Med J 23:141–153

    Google Scholar 

  • Trune DR, Morgan CR (1988) Influence of developmental auditory deprivation on neuronal ultrastructure in the mouse anteroventral cochlear nucleus. Dev Brain Res 42:304–308

    Google Scholar 

  • Vater M (1988) Lightmicroscopic observations on cochlear development in horseshoe bats. In: Nachtigall P (ed) Animal sonar systems. Plenum, New York, pp 341–347

    Google Scholar 

  • Vater M, Rübsamen R (1989) Postnatal development of the cochlea in horseshoe bats. In: Wilson JP, Kemp DT (eds) Cochlea mechanisms. Plenum, New York, pp 217–225

    Google Scholar 

  • Vater MJ, Feng AS, Betz M (1985) An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band. J Comp Physiol A 157:671–686

    Google Scholar 

  • Young ED (1985) Response characteristics of neurons in the cochlear nuclei: In: Berlin C (ed) Hearing science. College Hill Press, San Diego, pp 423–460

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rübsamen, R., Schäfer, M. Ontogenesis of auditory fovea representation in the inferior colliculus of the Sri Lankan rufous horseshoe bat, Rhinolophus rouxi . J Comp Physiol A 167, 757–769 (1990). https://doi.org/10.1007/BF00189766

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189766

Key words

Navigation