Skip to main content
Log in

Sensitivity and dynamics of the pupil mechanism in two tenebrionid beetles

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Using infrared reflectometry of the deep pseudopupil, we have measured the absolute sensitivity, the dynamic range and the speed of the pupil mechanism in the acone apposition eye of two tenebrionid beetles: Zophobas morio F. and Tenebrio molitor L. The following conclusions are made from the results:

  1. 1.

    There is a substantial difference in sensitivity of the pupil mechanism between the two beetle species. The pupil is about 5.3 log units more sensitive in Zophobas than in Tenebrio.

  2. 2.

    There is also a difference in sensitivity between day and night. Surprisingly, the sensitivity is higher at day-time, and the difference is about 0.5 log units in both Zophobas and Tenebrio.

  3. 3.

    Light adaptation is completed faster during daytime than at night in both Zophobas and Tenebrio, whereas dark adaptation is completed about equally fast both day and night in both species. The speed of the pupil response, however, is dependent on the preceding adaptation history.

  4. 4.

    The pupil mechanism in both species is under the influence of a circadian rhythm, which determines the size of the pupil aperture in such a way that the pupil is maximally open when dark-adapted at night, but only partially open when dark-adapted at daytime.

The differences in sensitivity and dynamics of the pupil mechanism between day and night are mainly due to the circadian rhythm setting the control range of the pupil aperture in both Zophobas and Tenebrio. The pupil differences between the two beetles are discussed regarding behavioural differences between the two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPP:

deep pseudopupil

PPC:

primary pigment cell

References

  • Autrum H (1981) Light and dark adaptation in invertebrates. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6C). Springer, Berlin Heidelberg New York, pp 1–91

    Google Scholar 

  • Bernhard CG, Höglund G, Ottoson G (1963) On the relation between pigment position and light sensitivity of the compound eye in different nocturnal insects. J Insect Physiol 9:573–586

    Google Scholar 

  • Caveney D (1986) The phylogenetic significance of ommatidium structure in the compound eyes of polyphagan beetles. Can J Zool 64:1787–1819

    Google Scholar 

  • Chinery M (1973) A field guide to the insects of Britain and northern Europe. William Collins Sons & Co Ltd, London

    Google Scholar 

  • Cotton RT, St.George RA (1929) The mealworms. Tech Bull US Dep Agric 95:1–37

    Google Scholar 

  • Eckert M (1968) Hell-Dunkel-Adaptation in aconen Appositionsaugen der Insekten. Zool Jb Physiol 74:102–120

    Google Scholar 

  • Franceschini N (1972) Pupil and pseudopupil in the compound eye of Drosophila. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 75–82

    Google Scholar 

  • Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 98–125

    Google Scholar 

  • Gebien H (1941) Katalog der Tenebrioniden. Mitteil Münchn Ent Ges 31(1):334–336 (629–631)

    Google Scholar 

  • Home EM (1976) The fine structure of some carabid beetle eyes, with particular reference to ciliary structures in the retinula cells. Tissue Cell 8:311–333

    Google Scholar 

  • Horridge GA, Barnard PBT (1965) Movement of palisade in locust retinula cells when illuminated. Q J Microsc Sci 106:131–135

    Google Scholar 

  • Horridge GA, Duniec J, Marçelja L (1981) A 24-hour cycle in single locust and mantis photoreceptors. J Exp Biol 91:307–322

    Google Scholar 

  • Ioannides AC, Horridge GA (1975) The organization of visual fields in the hemipteran acone eye. Proc R Soc Lond B 190:373–391

    Google Scholar 

  • Kirschfeld K, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6:13–22

    Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6B). Springer, Berlin Heidelberg New York, pp 471–592

    Google Scholar 

  • Laughlin SB (1981) Neuronal principles in the visual system. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6B). Springer, Berlin Heidelberg New York, pp 133–280

    Google Scholar 

  • Laughlin SB, Hardie RC (1978) Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. J Comp Physiol 128:319–340

    Google Scholar 

  • Lüdtke H (1953) Retinomotorik und Adaptationsvorgänge im Auge des Rückenschwimmers (Notonecta glauca). Z Vergl Physiol 35:129–152

    Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Clarendon Press, Oxford

    Google Scholar 

  • McLean M, Horridge GA (1977) Structural changes in light-and dark-adapted compound eyes of the Australian earwig Labidura riparia truncala (Dermaptera). Tissue Cell 9:653–666

    Google Scholar 

  • Menzi U (1987) Visual adaptation in nocturnal and diurnal ants. J Comp Physiol A 160:11–21

    Google Scholar 

  • Nilsson D-E (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg, pp 30–73

    Google Scholar 

  • Nilsson D-E, Howard J (1989) Intensity and polarization of the eyeshine in butterflies. J Comp Physiol A 166:51–56

    Google Scholar 

  • Nilsson D-E, Land MF, Howard J (1988) Optics of the butterfly eye. J Comp Physiol A 162:341–366

    Google Scholar 

  • Nordtug T (1990) Dynamics and sensitivity of the pupillary system in the eyes of noctuid moths. J Insect Physiol 36:893–901

    Google Scholar 

  • Ro A-I, Nilsson D-E (1993) The circadian pupil rhythm in Tenebrio molitor, studied noninvasively. Naturwissenschaften 80:186–189

    Google Scholar 

  • Roebroek JGH, Stavenga DG (1990) Insect pupil mechanisms IV. Spectral characteristics and light intensity dependence in the blowfly, Calliphora erythrocephala. J Comp Physiol A 166:537–543

    Google Scholar 

  • Rossel S (1979) Regional differences in photoreceptor performance in the eye of the praying mantis. J Comp Physiol 131:95–112

    Google Scholar 

  • Snyder AW (1979) The physics of vision in compound eyes. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6A). Springer, Berlin Heidelberg New York, pp 225–313

    Google Scholar 

  • Sotavalta O, Tuurala O, Oura A (1962) On the structure and photomechanical reactions of the compound eyes of crane-flies (Tipulidae; Limnobiidae). Ann Acad Sci Fenn Ser A 62:1–14

    Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6A). Springer, Berlin Heidelberg New York, pp 357–439

    Google Scholar 

  • Stavenga DG, Kuiper JW (1977) Insect pupil mechanisms I. On the pigment migration in the retinula cells of Hymenoptera (Suborder Apocrita). J Comp Physiol 113:55–72

    Google Scholar 

  • Stavenga SG, Numan JAJ, Tinbergen J, Kuiper JW (1977) Insect pupil mechanisms II. Pigment migration in retinula cells of butterflies. J Comp Physiol 113:73–93

    Google Scholar 

  • Tschinkel WR (1984) Zophobas atratus (Fab.) and Z. rugipes Kirsch (Coleoptera: Tenebrionidae) are the same species. Coleopt Bull 38(4):325–333

    Google Scholar 

  • Wachmann E (1977) Vergleichende Analyse der feinstrukturellen Organisation offener Rhabdome in den Augen der Cucujiformia (Insecta, Coleoptera), unter besonderer Berücksichtigung der Chrysomelidae. Zoomorphologie 88:95–131

    Google Scholar 

  • Wada S, Schneider G (1967) Eine Pupillenreaktion im Ommatidium von Tenebrio molitor. Z Vergl Physiol 54:542

    Google Scholar 

  • Wada S, Schneider G (1968) Circadianer Rhythmus der Pupillenweite im Ommatidium von Tenebrio molitor. Z Vergl Physiol 58:395–397

    Google Scholar 

  • Walcott B (1971) Cell movement on light adaptation in the retina of Lethocerus (Belostomatidae, Hemiptera). Z Vergl Physiol 74:1–16

    Google Scholar 

  • Walcott B (1975) Anatomical changes during light adaptation in insect compound eyes. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon, Oxford, pp 20–36

    Google Scholar 

  • Weischner M (1989) Der groβe Schwarzkäfer als Futterinsekt: Zophobas mono. Gefiederte Welt 113(3):89

    Google Scholar 

  • Williams DS (1980) Organisation of the compound eye of a tipulid fly during day and night. Zoomorphologie 95:85–104

    Google Scholar 

  • Williams DS (1982) Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Cell Tissue Res 225:595–617

    Google Scholar 

  • Yagi N, Koyama N (1963) The compound eye of Lepidoptera. Shinkyo Press, Tokyo

    Google Scholar 

  • Yinon U (1970) The visual mechanisms of Tenebrio molitor: some aspects of the spectral response. J Exp Biol 53:221–229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ro, A.I., Nilsson, D.E. Sensitivity and dynamics of the pupil mechanism in two tenebrionid beetles. J Comp Physiol A 173, 455–462 (1993). https://doi.org/10.1007/BF00193518

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193518

Key words

Navigation