Skip to main content
Log in

Neuromuscular coordination and proprioceptive control of rhythmical abdominal ventilation in intactLocusta migratoria migratorioides

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Within the fifth abdominal segment of intact locusts a group of dorso-ventral expiratory muscles and one inspiratory antagonist display alternating ventilatory patterns of three basic types. Accelerated movements in the dorso-ventral plane are supported by isometric activity of the intersegmental muscles which prevent extensions in the longitudinal axis.

The intersegmental coupling of ventilatory motor patterns is strict during strong ventilation and loose and more metachronal with weaker pumping movements.

In resting animals ventilatory rhythms are discontinuous and the long intervening pauses are interrupted by miniature inspirations only. Pumping series have a tendency to prolong the later ventilatory cycles, and interfering rhythms of different pumping types occur. Low concentrations of atmospheric CO2 up to 3 % do not accelerate ventilatory rhythms.

Afferent activity from proprioceptors could be related to ventilatory motor bursts and stimulation of the sensory nerve produces inspiratory bursts via the segmental ganglion.

The neuronal mechanisms of synergistic and antagonistic muscle control as well as the segmental and intersegmental coordination and the effect of autonomous ganglionic oscillators in ventilation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Camhi, J. M., Hinkle, J.: Attentiveness to sensory stimuli: central control in locusts. Science175, 550–553, 553–556 (1972)

    Google Scholar 

  • Campbell, J. I.: The anatomy of the nervous system of the mesothorax ofLocusta migrat. migratorioides R. and F. Proc. zool. Soc. London137, 403–432 (1961)

    Google Scholar 

  • Case, J. F.: Median nerves and cockroach spiracular functions. J. Insect Physiol.1, 85–95 (1957)

    Google Scholar 

  • Davis, W. J.: The neural control of swimmeret beating in the lobster. J. Exp. Biol.50, 99–117 (1969)

    Google Scholar 

  • Farley, R. D., Case, J. F.: Sensory modulation of ventilative pacemaker output in the cockroachPeriplaneta americana. J. Insect Physiol.14, 591–601 (1968)

    Google Scholar 

  • Farley, R. D., Case, J. F., Roeder, K. D.: Pacemaker for tracheal ventilation in the cockroachPeriplaneta americana. J. Insect Physiol.13, 1713–1728 (1967)

    Google Scholar 

  • Fourtner, C. R., Drewes, C. D., Pax, R. A.: Rhythmic motor outputs coordinating the respiratory movement of the gill plates ofLimulus polyphemus. Comp. Biochem. Physiol.38a, 751–762 (1971)

    Google Scholar 

  • Fraenkel, G.: Untersuchungen über die Koordination von Reflexen und automatischnervösen Rhythmen bei Insekten. II. Die nervöse Regelung der Atmung während des Fluges. III. Das Problem des gerichteten Atemstromes in den Tracheen der Insekten. IV. Über die nervösen Zentren der Atmung und die Koordination ihrer Tätigkeit. Z. vergl. Physiol.16, 394–417, 418–443, 444–461 (1932)

    Google Scholar 

  • Guthrie, D. M. G.: Control of the ventral diaphragm in an insect. Nature196, 531–532 (1952)

    Google Scholar 

  • Hoyle, G.: The neuromuscular mechanism of an insect spiracle. J. Insect Physiol.3, 378–394 (1959)

    Google Scholar 

  • Huber, F.: Untersuchungen zur nervösen Atmungsregulation der Orthopteren (Saltatoria: Gryllidae). Z. vergl. Physiol.43, 341–359 (1960)

    Google Scholar 

  • Hughes, G. M., Wiersma, C. A. G.: The coordination of swimmeret movements in the crayfish,Procambarus clarkii (Girard). J. Exp. Biol.37, 637–670 (1960)

    Google Scholar 

  • Hustert, R.: Morphologie und Atmungsbewegungen des 5. Abdominalsegmentes vonLocusta migratoria migratorioides. Zool. Jb. Physiol.78, 157–174 (1974)

    Google Scholar 

  • Kestler, P.: Die diskontinuierliche Ventilation beiPeriplaneta americana und anderen Insekten. Dissertation, Würzburg (1971)

  • Lewis, G. W., Miller, P. L., Mill, P. S.: Neuro-muscular mechanisms of abdominal pumping in the Locust. J. exp. Biol.59, 149–168 (1973)

    Google Scholar 

  • Miller, P. L.: Respiration in the desert locust. I. The control of ventilation, J. Exp. Biol.37, 224–236 (1960a)

    Google Scholar 

  • Miller, P. L.: Respiration in the desert locust. II. The control of the spiracles. J. Exp. Biol.37, 224–236 (1960b)

    Google Scholar 

  • Miller, P. L.: Respiration of the desert locust. III. Ventilation and the spiracles during flight. J. Exp. Biol.37, 264–278 (1960c)

    Google Scholar 

  • Miller, P. L.: The central nervous control of respiratory movements. In: The Physiology of the Insect Central Nervous System (J. E. Treherne, L. W. L. Beament, eds.)3, 141–155 (1965)

  • Miller, P. L.: The derivation of the motor command to the spiracles of locust. J. Exp. Biol.46, 349–371 (1967)

    Google Scholar 

  • Miller, P. L.: Rhythmic activity in the insect nervous system: thoracic ventilation in nonflying beetles. J. Insect Physiol.17, 395–405 (1971)

    Google Scholar 

  • Miller, P. L.: Rhythmic activity in the insect nervous system. II. Sensory and electrical stimulation of ventilation in a mantid. J. Exp. Biol.54, 599–607 (1971)

    Google Scholar 

  • Myers, T. H., Retzlaff, E.: Localization and action of the respiratory centre of the Cuban Burrowing cockroach. J. Insect Physiol.9, 607–614 (1963)

    Google Scholar 

  • Paul, D. H.: Swimming behavior of the sand crab,Emerita analoga (Crustacea, Anomura). I. Analysis of the uropod stroke. Z. vergl. Physiol.75, 233–258 (1971)

    Google Scholar 

  • Pickard, R. S., Mill, P. J.: Ventilatory muscle activity in intact preparations of Aeschnid dragonfly larvae. J. Exp. Biol.56, 527–536 (1972)

    Google Scholar 

  • Plateau, F.: Recherches experimentales sur les mouvements respiratoires des insectes. Mém. Acad. Roy. Belg.45, 219ff (1882)

    Google Scholar 

  • Slifer, E. H., Finlayson, L. H.: Muscle receptor organs in grasshoppers and locusts. Quart. J. microscop. Sci.97, 617–620 (1956)

    Google Scholar 

  • Snodgrass, R. E.: The abdominal mechanisms of a grasshopper. Smith. Misc. Coll.94, 1–89 (1935)

    Google Scholar 

  • Stein, P. S. G.: Intersegmental coordination of swimmeret motoneuron activity in crayfish. J. Neurophysiol.34, 310–318 (1971)

    Google Scholar 

  • Tyrer, N. M.: Innervation of the abdominal intersegmental muscles in the grasshopper, II. Physiological analysis. J. Exp. Biol.55, 315–324 (1971)

    Google Scholar 

  • Watts, D. T.: Intratracheal pressure in insect respiration. Ann. ent. Soc. Amer.44, 527–528 (1951)

    Google Scholar 

  • Weevers, R. de G.: The physiology of a lepidopteran muscle receptor. I. The sensory response to stretch. J. Exp. Biol.44, 177–194 (1966)

    Google Scholar 

  • Weis-Fogh, T.: Biology and physics of locust flight. VIII. Lift and metabolic rate of flying locusts. J. Exp. Biol.41, 257–272 (1964)

    Google Scholar 

  • Wiersma, C. A. G., Ikeda, K.: Interneurones commanding swimmeret movements in the crayfish,Procambarus clarkii (Girard). Comp. Biochem. Physiol.12, 509–525 (1964)

    Google Scholar 

  • Wyse, G. A.: Intracellular and extracellular motor neuron activity underlying rhythmic respiration inLimulus, J. Comp. Physiol.81, 259–276 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hustert, R. Neuromuscular coordination and proprioceptive control of rhythmical abdominal ventilation in intactLocusta migratoria migratorioides . J. Comp. Physiol. 97, 159–179 (1975). https://doi.org/10.1007/BF00645359

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645359

Keywords

Navigation