Skip to main content
Log in

Elongational flow behavior of polymeric fluids according to the Leonov model

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The viscoelastic behavior of polymeric systems based upon the Leonov model has been examined for (i) the stress growth at constant strain rate, (ii) the stress growth at constant speed and (iii) the elastic recovery in elongational flow. The model parameters have been determined from the available rheological data obtained either in steady shear flow (shear viscosity and first normal-stress difference as a function of shear rate) or oscillatory flow (storage and loss moduli as a function of frequency in the linear region) or from extensional flow at very small strain rates (time-dependent elongation viscosity in the linear viscoelastic limit). In addition, the effect of the parameter characterizing the strain-hardening of the material during elongation has also been studied. The estimation of this parameter has been based upon the structural characteristics of the polymer chain which include the critical molecular weight and molecular weight of an independent segment. Five different polymer melts have been considered with varying number of modes (maximum four modes). Resulting predictions are in fair agreement with corresponding experimental data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leonov, A. I., Rheol. Acta,15 85 (1976).

    Google Scholar 

  2. Upadhyay, R. K., A. I. Isayev, S. F. Shen, Rheol. Acta,20 443 (1981).

    Google Scholar 

  3. Isayev, A. I., C. A. Hieber, J. Polym. Sci., Phys. Ed.,20 423 (1982).

    Google Scholar 

  4. Isayev, A. I., R. K. Upadhyay, S. F. Shen, SPE Technical Papers,28 298 (1982).

    Google Scholar 

  5. Isayev, A. I., C. A. Hieber, Rheol. Acta,19 168 (1980).

    Google Scholar 

  6. Isayev, A. I., C. A. Hieber, D. Crouthamel, SPE Technical Papers,27 110 (1981).

    Google Scholar 

  7. Isayev, A. I., SPE Technical Papers,28 288 (1982).

    Google Scholar 

  8. Meissner, J., Rheol. Acta,10 230 (1971).

    Google Scholar 

  9. Meissner, J., Trans. Soc. Rheol.,16 405 (1972).

    Google Scholar 

  10. Vinogradov, G. V., Rheol. Acta,14 942 (1975).

    Google Scholar 

  11. Laun, H. M., H. Münstedt, Rheol. Acta,15 517 (1976).

    Google Scholar 

  12. Laun, H. M., H. Münstedt, Rheol. Acta,17 415 (1978).

    Google Scholar 

  13. Münstedt, H., H. M. Laun, Rheol. Acta,18 492 (1979).

    Google Scholar 

  14. Agrawal, P. K., W. K. Lee, J. M. Lornston, C. I. Richardson, K. F. Wissburn, A. B. Metzner, Trans. Soc. Rheol.,21 355 (1977).

    Google Scholar 

  15. Prokunin, A. N., Int. J. Polym. Mater.,8 303 (1980).

    Google Scholar 

  16. Prokunin, A. N., N. G. Proskurina, J. Eng. Phys. (Russian),36 504 (1979).

    Google Scholar 

  17. Prokunin, A. N., N. G. Proskurina, J. Eng. Phys. (Russian),36 42 (1979).

    Google Scholar 

  18. Ishikuza, O., K. Koyama, Polymer,21 164 (1977).

    Google Scholar 

  19. Matsui, M., D. C. Bogue, Trans. Soc. Rheol.,21 133 (1977).

    Google Scholar 

  20. Matsumoto, T., D. C. Bogue, Trans. Soc. Rheol.,21 453 (1977).

    Google Scholar 

  21. Borisenkova, E. K., V. E. Dreval, G. V. Vinogradov, M. K. Kurbanaliev, V. V. Moiseyev, V. G. Shalganova, Polymer,23 91 (1982).

    Google Scholar 

  22. Kurbanaliev, M. K., G. V. Vinogradov, V. E. Dreval, A. Ya. Malkin, Polymer,23 100 (1982).

    Google Scholar 

  23. Chang, H., A. S. Lodge, Rheol. Acta,11 127 (1972).

    Google Scholar 

  24. Wagner, M. H., Rheol. Acta,15 136 (1976).

    Google Scholar 

  25. Takaki, T., D. C. Bogue, J. Appl. Polym. Sci.,19 419 (1975).

    Google Scholar 

  26. Wagner, M. H., Rheol. Acta,18 681 (1979).

    Google Scholar 

  27. Acierno, D., F. P. La Mantia, B. de Cindio, L. Nicodemo, Trans. Soc. Rheol.,21 261 (1977).

    Google Scholar 

  28. Acierno, D., F. P. La Mantia, G. Marucci, G. Rizzo, G. Titomanlio, J. Non-Newtonian Fluid Mech.,1 147 (1976).

    Google Scholar 

  29. Leonov, A. I., A. N. Prokunin, Rheol. Acta,19 394 (1980).

    Google Scholar 

  30. Lodge, A. S.,Elastic Liquids Academic Press (New York 1960).

    Google Scholar 

  31. Lodge, A. S.,Body Tensor Fields in Continuum Mechanics, Academic Press (New York 1974).

    Google Scholar 

  32. Acierno, D., F. P. La Mantia, G. Marucci, G. Titomanlio, J. Non-Newtonian Fluid Mech.,1 125 (1976).

    Google Scholar 

  33. Wagner, M. H., S. E. Stephenson, J. Rheol.,23 489 (1979).

    Google Scholar 

  34. Treloar, L.,Physics of Rubber Elasticity 3. ed. Oxford University Press (Oxford 1975).

    Google Scholar 

  35. Porter, R. S., T. F. Johnson, Rheol. Acta,7 332 (1968).

    Google Scholar 

  36. Frenkel, S. Ya.,Encyclopedia of Polymers, p. 617 (Russian), Soviet Encyclopedia Publisher, V. 1, (Moscov, 1972).

  37. Van Krevelen, D. W.,Properties of Polymers, p. 339, Elsevier Scientific Publishing Co., 2nd ed. (Amsterdam, 1976).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyay, R.K., Isayev, A.I. Elongational flow behavior of polymeric fluids according to the Leonov model. Rheol Acta 22, 557–568 (1983). https://doi.org/10.1007/BF01351402

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01351402

Key words

Navigation