Skip to main content
Log in

Rheological and drag reduction characteristics of xanthan gum solutions

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological and turbulent drag reducing characteristics of commercial and purified xanthan gum solutions of concentrations 50–500 ppm have been studied with and without addition of 100 ppm NaCl. The purification by soxlet extraction of xanthan gum using 95% ethanol is effective in removing low-molecular-weight impurities from xanthan. The increased content of higher molecular-weight xanthan in purified xanthan is evident from rheological and drag reduction behavior. The addition of 100 ppm salt to dilute solutions introduces semi-flexibility in xanthan gum solution without occurrence of self-association. The change in molecular behavior in the presence of salt is evident from rheological normal-stress and turbulent drag reduction behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeanes A, Pittsley JE, Senti FR (1961) J Appl Polym Sci 5:519

    Google Scholar 

  2. Hoyt JW (1985) Trends Biotechn 3:17

    Google Scholar 

  3. Deshmukh SR, Singh RP (1986) J Appl Polym Sci 32:6163

    Google Scholar 

  4. Wellington SL (1983) Soc Petr Eng J 23:901

    Google Scholar 

  5. Sandvik EI, Maerker JM (1977) Application of Xanthan gum for Enhanced Oil Recovery, in: Sandford SA, Laskin A (eds) Extracellular, Microbial, Polysaccaride. ACS Symposium Series 45:242

    Google Scholar 

  6. Pasika WM (1977) Polysaccaride Polyelectrolytes. Ibid pp 128

  7. Morris ER (1977) Molecular Origin of Xanthan Solution. Properties Ibid pp 81

  8. Elliot JH (1977) Some Rheological Properties of Gum Solutions. Ibid pp 144

  9. Dea ICM, McKinnon AM, Rees DA (1972) J Mol Biol 68:153

    Google Scholar 

  10. Jansson PE, Kenne L, Lindberg B (1975) Carbohydrate Research 45:275

    Google Scholar 

  11. Southwick JG, Jamieson AM, Blackwell J (1982) Carbohydrate Research 99:117

    Google Scholar 

  12. Rees DA (1972) Biochem J 126:157

    Google Scholar 

  13. Muller G, Anrhourrache M, Lecourtier J, Chauveteau G (1986) Int J Bio Macromolecules 8:167

    Google Scholar 

  14. Norton IT, Goodall DM, Frangou SA, Morris ER, Rees DA (1984) J Mol Biol 175:371

    Google Scholar 

  15. Wellington SL (1981) Polymer Preprints 22:63

    Google Scholar 

  16. Muller G, Lacourtier J, Chauveteau G, Allain C (1984) Makrom Chem Rapid Comm 5:203

    Google Scholar 

  17. Holzwarth G (1978) Carbohydr Res 66:173

    Google Scholar 

  18. Paradossi G, Brant DA (1982) Macromolecules 15:874

    Google Scholar 

  19. Sato T, Norisuye T, Fujita H (1984) Polymer J 16:341

    Google Scholar 

  20. Sato T, Kojima S, Norisuye T, Fujita H (1984) Polymer J 16:423

    Google Scholar 

  21. Holzwarth G, Prestidge EB (1977) Science 197:757

    Google Scholar 

  22. Besio GJ, Leavesley IM, Prud'homme RK, Farinato R (1985) Electric Birefringence Measurement of Native, Denatured and Renatured Xanthan Polysaccharide (private communication)

  23. Holzwarth G (1980) Am Chem Soc Symp Ser 150:15

    Google Scholar 

  24. Whitcomb PJ, Macosko CW (1978) J Rheol 22:493

    Google Scholar 

  25. Thurston GB, Pope GA, (1981) J Non-Newtonian Fluid Mech 9:69

    Google Scholar 

  26. Chang H, Ollis DF (1982) Biotech and Bio Engg 24:2309

    Google Scholar 

  27. Chauveteau G (1982) J Rheol 26:111

    Google Scholar 

  28. Lim T, Uhl JT, Prud'homme RK (1984) J Rheol 28:367

    Google Scholar 

  29. Rochefort WE, Middleman S (1987) J Rheol 31:337

    Google Scholar 

  30. Kenis PR (1971) J Appl Polym Sci 15:607

    Google Scholar 

  31. Layec-Raphalen MN (1984) in: Sellin RHJ, Moses R (eds) Drag Reduction, Paper E 2, University of Bristol

  32. Berman NS (1986) in: Cheremisinoff IP (ed), Encycl Fluid Mech, Vol 1, Flow Phenomena & Measurements, Gulf Publishing, pp 1060

  33. Suaysomol K (1983) M Sc Thesis, Arizona State University

  34. Rochefort WE, Middleman S (1985) Proc AIP 137:117

    Google Scholar 

  35. Kang KS, Cottrell IW (1979) Polysaccharides in: Peppler HJ, Perlman D (eds), Microbial Technology, 2nd ed p 417

  36. Hsiachen CS, Sheppard EW (1980) Polym Engg Sci 20:512

    Google Scholar 

  37. Carreau PJ (1972) Trans Soc Rheol 16:97

    Google Scholar 

  38. Michele J (1978) Rheol Acta 17:42

    Google Scholar 

  39. Bewersdorff H-W (1985) “Heterogeneous Drag Reduction in Turbulent Pipe Flows” IUTAM Symp. Essen 1984, in: Gampest B (ed) The Influence of Polymer Additives on Velocity and Temperature Fields. Springer Heidelberg, pp 337–348

  40. Virk PS (1975) Nature 233:109

    Google Scholar 

  41. Bewersdorff H-W, Berman NS (1988) Rheol Acta 27:130

    Google Scholar 

  42. Cross MM (1965) J Colloid Sci 20:417

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bewersdorff, H.W., Singh, R.P. Rheological and drag reduction characteristics of xanthan gum solutions. Rheol Acta 27, 617–627 (1988). https://doi.org/10.1007/BF01337457

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01337457

Key words

Navigation