Skip to main content
Log in

Rheological behavior and birefringence investigations on drag-reducing surfactant solutions of tallow-(tris-hydroxyethyl)-ammonium acetate/sodiumsalicylate mixtures

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Rheological and flow birefringent properties of a drag-reducing mixture of tallow-(tris-hydroxiethyl)-ammonium acetate (ETHOQUAD T/13-50) and sodiumsalicylate (NaSal) have been studied as a function of the concentration and of the salt/surfactant molar ratio x. The optimum molar ratio x for drag reduction is around 2.5. It is shown that shear-induced supramicellar structures (SIS) which are believed to be responsible for friction reduction in turbulent pipe flow develop in the presence of NaSal. It was observed that SIS are also formed even if the concentration c exceeds c *, i.e., the concentration where the volumes of rotation of the individual rodlike micelles start to overlap. The validity of the stress optical law is discussed. A switch from a reptation-controlled stress relaxation to a kinetically controlled mechanism takes place at x ≈ 2.5 for this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angel A (1985) Elektrooptisches Verhalten mizellarer Systeme. Ph D Thesis, Universität Bayreuth

  • Angel M, Hoffmann H, Krämer U, Thurn H (1989) The electric birefringence anomaly in colloidal and micellar systems. Ber Bunsenges Phys Chem 93:184–191

    Google Scholar 

  • Aslanov PW, Maksyutenko SN, Povkh IL, Simonenko AP, Stupin AB (1980) Turbulent flows of surfactant solutions. (Russ.); Izv Akad Nauk SSSR, Mekh Zhidk Gaza 1:36–43

    Google Scholar 

  • Bewersdorff HW, Dohmann J, Langowski J, Lindner P, Maack A, Oberthür R, Thiel H (1989) SANS and LSstudies on drag reducing surfactant solutions. Physica B 156, 157:508 - 511

    Google Scholar 

  • Bewersdorff HW, Frings B, Lindner P, Oberthür RC (1986) The conformation of drag reducing micelles from smallangle neutron scattering experiments. Rheol Acta 25:642 - 646

    Google Scholar 

  • Bewersdorff HW, Lindner P, Heen R, Sittart P, Thiel H, Langowski J, Oberthür R (1990) Drag-reducing surfactant solutions in laminar and turbulent flow investigated by small-angle neutron scattering and light scattering. Progr Colloid Polym Sci 81:107–112

    Google Scholar 

  • Bruinsma R, Gelbart WM, Ben-Shaul A (1992) Flow induced gelation of living (micellar) polymers. J Chem Phys 96(10):7710 - 7727

    Google Scholar 

  • Cates ME, Turner MS (1990) Flow induced gelation of rodlike micelles. Europhys Lett 11(7):681–686

    Google Scholar 

  • Cates ME, Turner MS (1992) Flow induced phase transitions in rod-like micelles. J Phys: Condensed Matter 4:3719 - 3741

    Google Scholar 

  • Chang RC, Zakin JL (1984) Drag reduction of non-ionic surfactant mixtures. In: Gambert G (ed) Proceedings of the IUTAM symposium on the influence of polymer additives on velocity and temperature fields. Essen 1984, S 61-70

  • Chara Z (1992) Internal Report. Institute of Hydrodynamics, Praha, CR

    Google Scholar 

  • Doi M, Edwards SF (1978) Dynamics of rodlike macromolecules in concentrated solutions. Part 2 Chem Soc Faraday Trans II 74:918 - 930

    Google Scholar 

  • Fredericq E, Houssier C (1973) Electric dichroism and electric birefringence. Clarendon Press, Oxford

    Google Scholar 

  • Frey A (1925) Doppelbrechung der Dispersoide. Kolloidchem Beihefte 20:209 - 243

    Google Scholar 

  • Hess S (1977) Dynamic viscosity of macromolecular liquids for a superposition of static and oscillatory velocity gradients. Physica A (Amsterdam) 87 A(2):273 - 287

    Google Scholar 

  • Hess S (1980) Viscoelasticity associated with molecular alignment. Z Naturforsch 35A(1):915–919

    Google Scholar 

  • Hofmann S (1994) Untersuchung des Scherinduzierten Verhaltens mehrkomponentiger Tensidlosungen. Ph D Thesis, Universitat Bayreuth

  • Hofmann S, Hoffmann H, Rauscher A (1991) Shear induced micellar structures. Ber Bunsenges Phys Chem 95(2):153–164

    Google Scholar 

  • Hu Y, Wang S-Q, Jamieson AM (1993) Kinetic studies of a shear thickening micellar solution. J Colloid Interf Sci 156(1):31–37

    Google Scholar 

  • Jindal VK, Kalus J, Pilsl H, Hoffmann H, Lindner P (1990) Dynamic small angle neutron scattering study of rodlike micelles in a surfactant solution. J Phys Chem 94:3120 - 3238

    Google Scholar 

  • Kalus J, Hoffmann H, Chen S-H, Lindner P (1989) Correlations in micellar solutions under shear: a small-angle neutron scattering study of the double-chain surfactant n-hexadecyloctyldimethylammonium bromide. J Phys Chem 93:4267 - 4276

    Google Scholar 

  • Kalus J, Hoffmann H, Lindner P (1989) Small-angle neutron scattering experiments of micellar solutions under shear. Progr Colloid Polym Sci 79:233–238

    Google Scholar 

  • Kleuker H-H, Althaus W, Steiff A, Weinspach P-M (1990) “Abschlutßbericht zum EG Demonstrationsprojekt ‘Einsatz von Reibungsminderern in der Fernwärmeversor-gung’ in Völklingen 1990”, Universitat Dortmund

  • Löbl M (1985) Strömungsdoppelbrechung und Flietßverhalten viskoelastischer Tensidlösungen. Ph D Thesis, Universität Bayreuth

  • Ohlendorf D, Interthal W, Hoffmann H (1986) Surfactant systems for drag-reduction: physico-chemical properties and rheological behaviour. Rheol Acta 25:468 - 486

    Google Scholar 

  • Pilsl H, Hoffmann H, Hofmann S, Kalus K, Kencono AW, Lindner P, Ulbricht W (1993) Shape investigation of mixed micelles by small-angle neutron scattering. J Phys Chem 97:2745 - 2754

    Google Scholar 

  • Prötzl B, Springer J (1994) TU Berlin, unpublished results

  • Rauscher A, Rehage H, Hoffmann H (1991) Stretched exponential relaxation processes in viscoelastic surfactant systems. Prog Colloid Polyn Sci 84:99 - 102

    Google Scholar 

  • Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions: model systems for theological research. Mol Phys 74(5):933 - 973

    Google Scholar 

  • Rehage H, Hoffmann H (1982) Shear induced phase transitions in highly dilute aqueous detergent systems. Rheol Acta 21:561–563

    Google Scholar 

  • Rehage H, Wunderlich I, Hoffmann H (1986) Shear induced phase transitions in dilute aqueous surfactant systems. Progr Colloid Polym Sci 72:51–59

    Google Scholar 

  • Smith BC (1992) Flow-birefringence and NMR corrosion measurements in drag reducing cationic surfactant solutions for district heating and cooling systems. Ph D Thesis, Columbus, Ohio State University

    Google Scholar 

  • Stern P, Myska J (1994) Properties of a drag-reducing micellar system. Colloid Polym Sci 272:542–547

    Google Scholar 

  • Thurn H, Löbl M, Hoffmann H (1985) Viscoelastic detergent solutions. A quantitative comparison between theory and experiment. J Phys Chem 89(3):517–522

    Google Scholar 

  • Usui H, Saeki T (1993) Drag-reduction and heat transfer reduction by cationic surfactants. J Chem Eng Japan 26(1):103–106

    Google Scholar 

  • Wang SQ (1990) Shear induced phase transitions of living polymers (micelles). J Phys Chem 94(22): 8381- 8384

    Google Scholar 

  • Wang SQ, Huang FY (1991) Growth of dynamic polymers (micelles) in shear flow. Macromolecules 24(10):3004 - 3009

    Google Scholar 

  • Wang SQ (1992) Micellar solutions in shear: viscosity and normal stress. Colloid Polym Sci 270:1130–1134

    Google Scholar 

  • Wiener O (1912) Die Theorie des Mischkörpers für das Feld der Stationären Strömung. Abhdlgn d sächs Ges d Wiss (math-phys Kl) 32:507–604

    Google Scholar 

  • Wiener O (1926) Formdoppelbrechung bei Adsorption. Kolloidchem Beihefte 23:189–198

    Google Scholar 

  • Wunderlich I, Hoffmann H, Rehage H (1987) Flow birefringence and rheological measurements on shear induced micellar structures. Rheol Acta 26:532 - 542

    Google Scholar 

  • Zakin JL, Chou LC, Smith BC, Lu B (1993) Molecular variables affecting drag reduction by cationic surfactants. In: Proceedings of the conference on fluid mechanics and hydrodynamical aspects of biosphere, Sept 20–21, Liblice, CR, p 20 – 25

  • Zakin JL, Lui HL (1983) Variables affecting drag reduction by nonionic surfactant additives. Chem Eng Comm 23:77 - 88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, S., Stern, P. & Myska, J. Rheological behavior and birefringence investigations on drag-reducing surfactant solutions of tallow-(tris-hydroxyethyl)-ammonium acetate/sodiumsalicylate mixtures. Rheol Acta 33, 419–430 (1994). https://doi.org/10.1007/BF00366584

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366584

Key words

Navigation