Skip to main content
Log in

Applicability of the free volume concept on relaxation phenomena in the glass transition range

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Conclusion

Except the discrepancies mentioned with respect to pressure investigations, which need clarification in the future, we can conclude in a general way, as follows.

As far as only average parameters of macroscopic samples are considered (complex moduli, or dielectric constants, volume or heat content etc....), the free volume concept can relate the variations of molecular mobility to the changes of an average free volume in a semiquantitative way. This average free volume can no longer fully caracterize the wide variety of molecular motions involved in the kinetics of redistribution of holes in the liquid during the recovery experiments. These kinetic processes involve a wide distribution of retardation times, which may be associated with the local distribution of holes, or with that of cooperating groups of molecules, or molecular segments.

On the other hand, free volume is not necessarily the fundamental molecular parameter which controls the rate of configurational changes, characterized by the variation of entropy of the liquid (14). Even if this is the case, most of the above discussion may be applied to any other average excess parameter, as far as theDoolittle equation is formally adopted, in which (f/b) is expressed in terms of the new parameter, rather than that of free volume. However, since the relaxational free volume, as determined from the W.L.F. equation, and the independently measured volume changes are often in close agreement, this means that the variations of the excess entropy (12), or those of the configurational free energy (13), and the changes in volume are closely related. Therefore, the free volume concept remains still a valuable tool for unifying different kinds of rate processes from both a theoretical and an experimental point of view, especially in the glass transition range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, F., Erg. Exakt. Naturwiss.9, 222 (1930).

    Google Scholar 

  2. Kauzmann, W., Chem. Rev.43, 219 (1948).

    Google Scholar 

  3. Kovacs, A. J., Fortschr. Hochpolym. Forsch.3, 394 (1964).

    Google Scholar 

  4. Partington, J. R., “An advanced treatise on physical chemistry” (London 1955).

  5. Ewell, R. E. andH. Eyring, J. Chem. Phys.,5, 726 (1937).

    Google Scholar 

  6. Williams, M. L., R. F. Landel andJ. D. Ferry, J. Amer. Chem. Soc,77, 4701 (1955).

    Google Scholar 

  7. Vogel, H., Physik. Z.,22, 645 (1921).

    Google Scholar 

  8. Tammann, G. andG. Hesse, Z. Anorg. Allgem. Chem.,156, 245 (1926).

    Google Scholar 

  9. Frenkel, J., “Kinetic theory of liquids” (London 1946).

  10. Doolittle, A. K., J. Appl Phys.,22, 1471 (1951).

    Google Scholar 

  11. Goldstein, M., J. Chem. Phys.,39, 3369 (1963).

    Google Scholar 

  12. Bestul, A. B. andS. S. Chang, J. Chem. Phys.,40, 3731 (1964).

    Google Scholar 

  13. Adam, G. andJ. H. Gibbs, J. Chem. Phys.,43, 139 (1965).

    Google Scholar 

  14. Gibbs, J. H. andE. A. Dimarzio, J. Chem. Phys.,28, 373 (1958).

    Google Scholar 

  15. Ferry, J.D., “Viscoelastic Properties of Polymers” (New York 1961).

  16. Fox, T. G., S. Gratch andS. Loshaek, “Viscosity relationships for polymers in bulk and concentrated solutions” p. 431 in “Rheology” Ed.F. R. Eirich (New York 1956).

  17. Plazek, D. J., J. Phys. Chem.,69, 3480 (1965).

    Google Scholar 

  18. Ferry, J. D. andR. S. Stratton, Kolloid. Z.,171, 107 (1960).

    Google Scholar 

  19. Marvin, R. S. andJ. E. McKinney, “Volume Relaxation in Amorphous Polymers” in “Physical Acoustics” Vol. II, Part B, Ed.W. P. Mason (NewYork 1965).

  20. O'Reilly, J. M., J. Polym. Sc.,57, 429 (1962).

    Google Scholar 

  21. Koppelmann, J., Proc. 4th Int. Congress on Rheology, Ed.E. H. Lee, Part 3, p. 361 (New York 1965).

  22. Williams, G., Trans. Faraday Soc.,60, 1556 (1964).

    Google Scholar 

  23. Passaglia, E. andG. M. Martin, J. Res. Nat. Bur. Stand.,68A, 273 (1964).

    Google Scholar 

  24. Breuer, A. andG. Rehage, Preprint N∘ 278. IUPAC Symposium on Macromolecular Chemistry, Prague, Sept. 1965 (to be published in the J. Polymer Sci.).

  25. Prod'home, M., Verres et Refractaires,14, 261 (1960).

    Google Scholar 

  26. Zijlstra, A. L., Phys. Chem. Glasses,4, 129 (1963).

    Google Scholar 

  27. De Bast, J. andP. Gilard, Phys. Chem. Glasses,4, 117 (1964).

    Google Scholar 

  28. Kovacs, A. J., R. S. Stratton andJ. D. Ferry, J. Phys. Chem.,67, 152 (1963).

    Google Scholar 

  29. Meyer, H. H., M. F. Mangin andJ. D. Ferry, J. Polymer. Sci.,3A, 1785 (1965).

    Google Scholar 

  30. Meyer, H. H. andJ. D. Ferry, Trans. Soc. Rheol.,9, Part 2, 343 (1965).

    Google Scholar 

  31. Kawaguchi, T. andK. Fujisawa, Private comm. (to be published).

  32. Kästner, Preprint N∘ 542, IUPAC Symposium on Macromolecular Chemistry, Prague, Sept. 1965.

  33. Kovacs, A. J., Trans. Soc Rheology,5, 285 (1961).

    Google Scholar 

  34. Goldbach, G. andG. Rehage, Preprint N∘ 269, IUPAC Symposium on Macromol. Chem., Prague, Sept. 1965 (see also this symposium, p. 302).

  35. Kästner, S., Kolloid Z. u. Z. Polymere,196, 143 (1965).

    Google Scholar 

  36. Sharonov, Yu. A. andM. V. Volkenstein, Vysokomol. Soed.,4, 917 (1962).

    Google Scholar 

  37. Adam, G., Kolloid. Z. u. Z. Polymere,195, 1 (1964).

    Google Scholar 

  38. Kovacs, A. J., “Phenomènes de Relaxation et de Fluage en Rhéologie non-linéaire”, p. 191 Ed. CNRS (Paris 1961).

    Google Scholar 

  39. Parks, G., L. E. Barton, M. G. Spaght andJ. W. Richardson, Physics5, 193 (1934).

    Google Scholar 

  40. Davidson, D. andR. Cole, J. Chem. Phys.,19, 1484 (1951).

    Google Scholar 

  41. McDuffie, G. E. andT. A. Litovitz, J. Chem. Phys.,37, 1699 (1962).

    Google Scholar 

  42. Bestul, A. B. Glasstech. Ber.32 K, VI/59 (1959).

    Google Scholar 

  43. Williams, M. L. andJ. D. Ferry, J. Colloid Sci.9, 479 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovacs, A.J. Applicability of the free volume concept on relaxation phenomena in the glass transition range. Rheol Acta 5, 262–269 (1966). https://doi.org/10.1007/BF02009732

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02009732

Keywords

Navigation