Skip to main content
Log in

Hepatic retinopathy: morphological features of retinal glial (Müller) cells accompanying hepatic failure

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

More than 80 years ago, Alzheimer described changes in the brains of patients who had suffered hepatic failure. Astrocytes are primarily affected; their nuclei become swollen, their intermediate filament protein composition is altered and their cytoplasm becomes vacuolated. Cells with these features are called Alzheimer type II astrocytes and these changes have been attributed to the toxic effects of elevated ammonia levels. The present study investigates whether the dominant glia of another part of the central nervous system, the Müller cells of the retina, undergo similar changes. Retinae of patients who had died with symptoms of hepatic failure were processed for histology, histochemistry, and immunocytochemistry. Cell nuclei were measured from brain astrocytes (insula cortex), Müller cells, and retinal bipolar neurons. Hepatic failure resulted in the enlargement of nuclei in astrocytes and Müller cells, and the enhanced expression in Müller cells of glial fibrillary acidic protein, cathepsin D, and the β-subunit of prolyl 4-hydroxylase (glial-p55). In some retinae, signs of gliosis were also observed. We conclude that increased levels of serum ammonia resulting from hepatic insufficiency cause changes in Müller cells that are similar to those seen in brain astrocytes. We term this condition hepatic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein H-G, Reichenbach A, Kirschke H, Wiederanders B (1989) Cell type-specific distribution of cathepsin B and D immunoreactivity within the rabbit retina. Neurosci Lett 98: 135–138

    Google Scholar 

  2. Bignami A, Dahl D (1979) The radial glia of Müller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the glial fibrillary acidic (GFA) protein. Exp Eye Res 28: 63–69

    Google Scholar 

  3. Boron WF, De Weer P (1976) Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol 67: 91–112

    Google Scholar 

  4. Boyarsky G, Ransom B, Schlue W-R, Davis MBE, Boron WF (1993) Intracellular pH regulation in single cultured astrocytes from rat forebrain. Glia 8: 241–248

    Google Scholar 

  5. Brasileiro-Filho G, Guimaraes RC, Pittella JEH (1989) Quantitation and karyometry of cerebral neuroglia and endothelial cells in liver cirrhosis and in hepatosplenic schistosomiasis mansoni. Acta Neuropathol 77: 582–590

    Google Scholar 

  6. Butterworth RF, Layrargues GP (eds) (1989) Hepatic encephalopathy. Humana Press, Clifton

    Google Scholar 

  7. Chévez P, Font RL (1993) Practical applications of some antibodies labeling the human retina. Histol Histopathol 8: 437–442

    Google Scholar 

  8. Eckstein A-K, Weber P, Jacobi P, Reichenbach A, Gregor M, Zrenner E (1994) Changes in retinal function in patients with various stages of encephalopathy due to hepatic failure. Invest Ophtahlmol Vis Sci 35:1832

    Google Scholar 

  9. Foos RY, Feeman SS (1970) Reticular cystoid degeneration of the peripheral retina. Am J Ophthalmol 69: 392–403

    Google Scholar 

  10. Gibson GE, Zimber A, Krook L, Richardson EP, Visek WJ (1974) Brain histology and behavior of mice injected with urease. J Neuropathol Exp Neurol 33: 201–211

    Google Scholar 

  11. Göttinger W (1977) Hohlraumbildungen in der Netzhautperipherie im rasterelektronenmikroskopischen Bild. Graefes Arch Klin Exp Ophthalmol 202: 109–120

    Google Scholar 

  12. Gregorios JB, Mozes LW, Norenberg L-OB, Norenberg MD (1985) Morphologic effects of ammonia on primary astrocyte cultures. I. Light microscopic studies. J Neuropathol Exp Neurol 44: 397–403

    Google Scholar 

  13. Gregorios JB, Mozes LW, Norenberg MD (1985) Morphologic effects of ammonia on primary astrocyte cultures. II. Electron microscopic studies. J Neuropathol Exp Neurol 44: 404–414

    Google Scholar 

  14. Hausman RE, Krishna Rao ASM, Ren Y, Sagar GDV, Shah BH (1993) Retina cognin, cell signaling, and neuronal differentiation in the developing retina. Dev Dyn 196: 263–266

    Google Scholar 

  15. Heidegger E (1935) Das Zentralnervensystem bei parasitären Lebererkrankungen. Arch Tierheilkd 69: 329–357

    Google Scholar 

  16. Hildebrand R (1980) Nuclear volume and cell metabolism. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  17. Hiscott PS, Grierson I, Trombetta CJ, Rahi AHS, Marshall J, McLeod D (1984) Retinal and epiretinal glia — an immunohistochemical study. Br J Ophthalmol 68: 698–707

    Google Scholar 

  18. Horita N, Matsushita M, Ishii T, Oyanagi S, Sakamoto K (1981) Ultrastructure of Alzheimer type II glia in hepatocerebral disease. Neuropathol Appl Neurobiol 7: 97–102

    Google Scholar 

  19. Ieb QS (1971) Experimental studies on influence of ammonia solution on rabbit retina. II. Electron microscopic findings. Acta Soc Ophthalmol Jpn 75: 349–365

    Google Scholar 

  20. Inomata H (1966) Electron microscopic observations on cystoid degeneration in the peripheral retina. Jpn J Ophthalmol 10: 26–40

    Google Scholar 

  21. Kasper M, Schuh D, Müller M (1994) Immunohistochemical localization of the β subunit of prolyl 4-hydroxylase in human alveolar epithelial cells. Acta Histochem 96: 309–313

    Google Scholar 

  22. Krishna Rao AS, Hausman RE (1993) cDNA for R-cognin: homology with a multifunctional protein. Proc Natl Acad Sci USA 90: 2950–2954

    Google Scholar 

  23. Lafarga M, Berciano MT, Del Olmo E, Andres MA, Pazos A (1992) Osmotic stimulation induces changes in the expression of β-adrenergic receptors and nuclear volume of astrocytes in supraoptic nucleus of the rat. Brain Res 588: 311–316

    Google Scholar 

  24. Laursen H, Diemer NH (1979) Morphometric studies of rat glial cell ultrastructure after urease-induced hyperammonemia. Neuropathol Appl Neurobiol 5: 345–362

    Google Scholar 

  25. Linser PJ, Sorrentino M, Moscona AA (1984) Cellular compartmentalization of carbonic anhydrase-C and glutamine synthetase in developing and mature mouse neural retina. Dev Brain Res 13: 65–71

    Google Scholar 

  26. Martin H, Hufnagl P, Wack R (1989) Karyometrische Untersuchungen an Astrocyten und Nervenzellen des Putamen bei hepatogener Encephalopathie des Menschen. Gegenbaurs Morphol Jahrb 135: 55–62

    Google Scholar 

  27. Martin H, Voss K, Hufnagl P, Wack R, Wassilew G (1989) Morphometric and densitometric investigations of protoplasmic astrocytes and neurons in human hepatic encephalopathy. Exp Pathol 32: 241–250

    Google Scholar 

  28. Mossakowski MJ, Renkawek K, Krasnicka Z, Smialek M, Pronaszko A (1970) Morphology and histochemistry of Wilsonian and hepatogenic gliopathy in tissue culture. Acta Neuropathol (Berl) 16: 1–16

    Google Scholar 

  29. Norenberg MD (1981) The astrocyte in liver disease. Adv Cell Neurobiol 2: 303–351

    Google Scholar 

  30. Norenberg MD (1989) The use of cultured astrocytes in the study of hepatic encephalopathy. In: Butterworth RF, Layrargues GP (eds) Hepatic encephalopathy. Humana Press, Clifton, pp 215–229

    Google Scholar 

  31. Norenberg MD, Lapham LW (1974) The astrocyte response in experimental portal-systemic encephalopathy: an electron microscopic study. J Neuropathol Exp Neurol 33: 422–435

    Google Scholar 

  32. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161: 303–310

    Google Scholar 

  33. Norenberg MD, Baker L, Norenberg L-OB, Blicharska J, Bruce-Gregorios JH, Neary JT (1991) Ammonia-induced astrocyte swelling in primary culture. Neurochem Res 16: 833–836

    Google Scholar 

  34. Oberleithner H, Schuricht B, Wünsch S, Schneider S, Püschel B (1993) Role of H+ ions in volume and voltage of epithelial cell nuclei. Pflügers Arch 423: 88–96

    Google Scholar 

  35. Pihlajaniemi T, Myllylä R, Kivirikko KJ (1991) Prolyl 4-hydroxylase and its role in collagen synthesis. J Hepatol 13 [Suppl 3]: S2-S7

    Google Scholar 

  36. Plum F, Hindenfelt B (1976) The neurological complications of liver disease. Handb Clin Neurol 27: 349–377

    Google Scholar 

  37. Reichenbach A, Schneider H, Leibnitz L, Reichelt W, Schaaf P, Schümann R (1989) The structure of rabbit retinal Müller (glial) cells is adapted to the surrounding retinal layers. Anat Embryol 180: 71–79

    Google Scholar 

  38. Reichenbach A, Stolzenburg J-U, Wolburg H, Härtig W, El-Hifnawi E, Martin H (1995) Effects of enhanced extracellular ammonia concentration on cultured mammalian retinal glial (Müller) cells. Glia 13: 195–208

    Google Scholar 

  39. Riepe RE, Norenberg MD (1977) Müller cell localization of glutamine synthetase in rat retina. Nature 268: 654–655

    Google Scholar 

  40. Safran M, Leonard JL (1991) Characterization of a N-bromoacetyl-L-thyroxine affinity-labeled 55-kilodalton protein as protein disulfide isomerase in cultured glial cells. Endocrinology 129: 2011–2016

    Google Scholar 

  41. Safran M, Frawell AP, Leonard JL (1992) Thyroid hormone-dependent redistribution of the 55-kilodalton monomer of protein disulfide isomerase in cultured glial cells. Endocrinology 131: 2413–2418

    Google Scholar 

  42. Sarthy PV, Lam DMK (1978) Biochemical studies of isolated glial (Müller) cells from the turtle retina. J Cell Biol 78: 675–684

    Google Scholar 

  43. Scherer H-J (1932) Zur Frage der Beziehungen zwischen Leber- und Gehirnveränderungen. Virchows Arch 288: 333–345

    Google Scholar 

  44. Schnitzer J (1985) Distribution and immunoreactivity of glia in the retina of the rabbit. J Comp Neurol 240: 128–142

    Google Scholar 

  45. Shaw G, Weber K (1983) The structure and development of the rat retina: an immunofluorescence microscopical study using antibodies specific for intermediate filament proteins. Eur J Cell Biol 30: 219–232

    Google Scholar 

  46. Spitznas M, Luciano L, Reale E (1981) Occluding junctions surrounding cystoid spaces in the human peripheral retina. A thin-section and freeze-fracture study. Graefes Arch Klin Exp Ophthalmol 217: 155–165

    Google Scholar 

  47. Stolzenburg J-U, Wolburg H, Reichenbach A, Fuchs U, Reichelt W, Martin H (1991) “Hepatic retinopathia” — Müller (glial) cells of the mammalian retina are primary targets of ammonia-induced lesions. In: Elsner N, Penzlin H (eds) Synapsetransmission-modulation. Thieme, Stuttgart, p 483

    Google Scholar 

  48. Von Hößlin C, Alzheimer A (1912) Ein Beitrag zur Klinik und pathologischen Anatomie der Westphal-Strümpellschen Pseudosklerose. Z Gesamte Neurol Psychiatr 8: 183–208

    Google Scholar 

  49. Voorhies TM, Ehrlich ME, Duffy TE, Petito CK, Plum F (1983) Acute hyperammonemia in the young primate: physiologic and neuropathologic correlates. Pediatr Res 17: 970–975

    Google Scholar 

  50. Yamada T, Hara S, Tamai M (1990) Immunohistochemical localization of cathepsin D in ocular tissues. Invest Ophthalmol Vis Sci 31: 1217–1223

    Google Scholar 

  51. Zamonra AJ, Cavanagh JB, Kyu MH (1973) Ultrastructural responses of the astrocytes to portocaval anastomosis in the rat. J Neurol Sci 18: 25–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichenbach, A., Fuchs, U., Kasper, M. et al. Hepatic retinopathy: morphological features of retinal glial (Müller) cells accompanying hepatic failure. Acta Neuropathol 90, 273–281 (1995). https://doi.org/10.1007/BF00296511

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00296511

Key words

Navigation