Skip to main content
Log in

The reaction garnet+clinopyroxene+quartz =2 orthopyroxene+anorthite: A potential geobarometer for granulites

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A mineralogic geobarometer based on the reaction garnet+clinopyroxene+quartz=2 orthopyroxene+anorthite is proposed. The geobarometric formulations for the Fe- and Mg- end member equilibria are

$$\begin{gathered} P_{({\text{Fe}})} {\text{ }}({\text{bars}}){\text{ = 32}}{\text{.097 }}T{\text{ }} - {\text{ 26385 }} - {\text{ 22}}{\text{.79 (}}T - 848 - T1{\text{n(}}T/848{\text{))}} \hfill \\ {\text{ }} - (3.655 + 0.0138T){\text{ }}\left( {\frac{{{\text{(}}T - 848{\text{)}}^{\text{2}} }}{T}} \right) \hfill \\ {\text{ }} - {\text{(3}}{\text{.123) }}T1{\text{n }}\frac{{(a_{a{\text{n}}}^{{\text{Plag}}} )(a_{{\text{fs}}}^{{\text{P}}\ddot u{\text{x}}} )^2 }}{{(a_{{\text{alm}}}^{{\text{Gt}}} )(a_{{\text{hed}}}^{{\text{Opx}}} )}} \hfill \\ P_{({\text{Mg}})} {\text{ (bars) = 9}}{\text{.270 }}T + 4006 - 0.9305{\text{ }}(T - 848 - T1{\text{n (}}T/848{\text{)}}) \hfill \\ {\text{ }} - (1.1963{\text{ }} - {\text{ }}6.0128{\text{ x 10}}^{ - {\text{3}}} T)\left( {\frac{{(T - 848)^2 }}{T}} \right) \hfill \\ {\text{ }} - 3.489{\text{ }}T1{\text{n }}\frac{{(a_{an}^{{\text{Plag}}} ){\text{ }}(a_{{\text{ens}}}^{{\text{Opx}}} )}}{{{\text{(}}a_{{\text{pyr}}}^{{\text{Gt}}} {\text{) (}}a_{{\text{diop}}}^{{\text{Cpx}}} {\text{)}}}}. \hfill \\ \end{gathered}$$

The end member thermodynamic data have been taken from the data base of Helgeson et al. (1978) and Saxena and Erikson (1983). The activities of pyroxene components and anorthite in plagioclase have been modelled after Wood and Banno (1973) and Newton (1983) respectively. The activities of pyrope and almandine are calculated from the binary interaction parameters for garnet solid solutions proposed by Saxena and Erikson (1983).

Pressures computed from these equations for fifty sets of published mineral data from several granulite areas are comparable with those obtained from dependable geobarometers. The pressure values determined from the Fe-end member equilibrium appear to be more reasonable than those from the Mg-end member reaction. It is likely that the difference in pressures computed from the Fe- and Mg-end members, ΔP *, have been caused by non-ideal mixing in the phases, especially in garnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berman RG, Brown TH (1985) Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3 -SiO2-TiO2-H2O-CO2: representation, estimation and high temperature extrapolation. Contrib Mineral Petrol 89:168–183

    Google Scholar 

  • Berman RG, Engi M, Greenwood HJ, Brown TH (1986) Derivation of internally-consistent thermodynamic data by the technique of mathematical programming: a review with applications to the system MgO-SiO2-H2O. J Petrol 27:1331–1364

    Google Scholar 

  • Bhattacharya PK, Mukherjee S (1987) Granulites in and around Bengal anorthosite, Eastern India; genesis of coronal garnet, and evolution of the granulite-anorthosite complex. Geol Mag 123:21–32

    Google Scholar 

  • Blencoe JG, Merkel GA, Seil MK (1982) Thermodynamics of crystal-fluid equilibria, with applications to the system NaAlSi3O8-CaAl2Si2O8-SiO2-NaCl-CaCl2-H2O. In: Saxena SK (ed) Advances in Physical Geochemistry. Springer, Berlin Heidelberg New York Tokyo, pp 191–222

    Google Scholar 

  • Bohlen SR, Wall VJ, Boettcher AL (1983) Geobarometry in granulites. In: Saxena SK (ed) Advances in Physical Geochemistry. Springer, Berlin Heidelberg New York Tokyo, pp 141–171

    Google Scholar 

  • Charlu TV, Newton RC, Kleppa OJ (1975) Enthalpies of formation at 970 K of compounds in the system MgO-Al2O3-SiO2 from high temperature solution calorimetry, with discussions of high pressure phase equilibria. Geochim Cosmochim Acta 42:367–375

    Article  Google Scholar 

  • Chatillon-Colinet C, Kleppa OJ, Newton RC, Perkins D (1983) Enthalpy of formation of Fe3Al2Si3O12 (almandine) by high temperature alkali-borate solution chemistry. Geochim Cosmochim Acta 47:439–444

    Article  Google Scholar 

  • Coolen JJMMM (1980) Chemical petrology of the Furua granulite complex, southern Tanzania. GUA Papers (Amsterdam) 13 (series 1) p 258

    Google Scholar 

  • Ellis DJ (1980) Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: P-T conditions of metamorphism, implications for garnet-cordierite equilibria and evolution of the deep crust. Contrib Mineral Petrol 74:201–210

    Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene exchange equilibria. Contrib Mineral Petrol 71:13–22

    Google Scholar 

  • Essene EJ (1982) Geologic thermometry and barometry. In: Ferry JM (ed) Characterisation of metamorphism through mineral equilibria. Mineral Soc Am Rev Mineral 10:153–206

  • Fountain DM, Salisbury MH (1981) Exposed cross-sections through the continental crust: Implications for crustal structure, petrology, and evolution. Earth Planet Sci Lett 56:263–277

    Article  Google Scholar 

  • Ganguly J (1973) Activity-composition relations of Jadeite in omphacite pyroxene: Theoretical deductions. Earth Planet Sci Lett 19:145–153

    Article  Google Scholar 

  • Ganguly J, Saxena SK (1984) Mixing properties of aluminosilicate garnets: constraints from natural and experimental data, and applications to geothermobarometry. Am Mineral 69:88–97

    Google Scholar 

  • Gasparik T (1983) Mixing properties of the diopside-jadeite solid solution. Abstr Geol Soc Am 13:456–457

    Google Scholar 

  • Glassley WE, Sorensen K (1980) Constant P s-T amphibolite to granulite facies transition in Agto (Greenland) metadolerite: Implications and applications. J Petrol 21:69–105

    Google Scholar 

  • Harley SL (1984a) The solubility of alumina in orthopyroxene coexisting with garnet in FeO-Al2O3-SiO2 and GaO-MgO-FeO-Al2O3-SiO2. J Petrol 25:665–696

    Google Scholar 

  • Harley SL (1984b) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373

    Google Scholar 

  • Harley SL, Green DH (1982) Garnet-orthopyroxene barometry for granulites and garnet peridotites. Nature 300:697–700

    Google Scholar 

  • Harris NBW, Holt RW, Drury SA (1982) Geobarometry, geothermometry and late Archean geotherms from the granulite facies of South India. J Geol 90:509–527

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbit HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock forming minerals. Am J Sci 278 A:1–229

    Google Scholar 

  • Hensen BJ (1976) The stability of pyrope-grossular garnet with excess silica. Contrib Mineral Petrol 55:279–292

    Google Scholar 

  • Herzberg CT (1978) Pyroxene geothermometry and geobarometry: Experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochim Cosmochim Acta 42:945–957

    Article  Google Scholar 

  • Holland TJB, Powell R (1985) An internally consistent thermodynamic data set with uncertainties and correlations: 2. Data and Results. J Met Geol 3:343–370

    Google Scholar 

  • Janardhan AS, Newton RC, Hansen EC (1982) The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contrib Mineral Petrol 79:130–149

    Google Scholar 

  • Johnson CS, Essene EJ (1982) The formation of garnet in olivinebearing metagabbros from Adirondack. Contrib Mineral Petrol 81:240–251

    Google Scholar 

  • Johnson CA, Bohlen SR, Essene EJ (1983) An evaluation of garnetclinopyroxene geothermometry in granulites. Contrib Mineral Petrol 84:191–198

    Google Scholar 

  • Kushiro I, Yoder HS (1966) Anorthite-forsterite and anorthite-enstatite and their bearing on the basalt-eclogite transformation. J Petrol 7:337–362

    Google Scholar 

  • Newton RC, Haselton HT (1981) Thermodynamics of the plagioclase-Al2SiO5-garnet-quartz geobarometer. In: Newton RC, Navrotsky A, Wood BJ (eds) Thermodynamics of Minerals and melts. Springer, Berlin Heidelberg New York, pp 129–145

    Google Scholar 

  • Newton RC, Perkins D (1982) Thermodynamic calibration of geobarometers based on the assemblages garnet-plagiocla-seorthopyroxene(clinopyroxene)-quartz. Am Mineral 67:203–222

    Google Scholar 

  • Perkins D (1979) Application of new thermodynamic data to mineral equilibria. PhD Thesis. University of Michigan

  • Perkins D, Newton RC (1981) Charnockite geobarometers based on coexisting garnet-pyroxene-plagioclase-quartz. Nature 292:144–146

    Google Scholar 

  • Perkins D, Chipera SJ (1985) Garnet-orthopyroxene-plagiocla-se-quartz barometry: Refinement and application to the English River Subprovince and the Minnesota River valley. Contrib Mineral Petrol 89:69–80

    Google Scholar 

  • Powell R (1978) The thermodynamics of pyroxene geotherms. Phil Trans Roy Soc Lond, Ser A, 288:457–469

    Google Scholar 

  • Räheim A, Green DH (1974) Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficients of coexisting garnet and clinopyroxene. Contrib Mineral Petrol 48:179–203

    Google Scholar 

  • Raith M, Raase P, Ackermand D, Lal RK (1983) Regional geothermobarometry in the granulite terrane of South India. Trans Roy Soc Edin 73:221–244

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascal) pressure and at high temperature. US Geol Surv Bull 1452, p 456

    Google Scholar 

  • Robie RA, Finch CB, Hemingway BS (1982) Heat capacity and entropy of fayalite (Fe2SiO4) between 5.1 and 383 K: Comparison of calorimetric and equilibrium values for the QFM buffer reaction. Am Mineral 67:463–469

    Google Scholar 

  • Sack RO (1980) Some constraints on the thermodynamic mixing properties of Fe-Mg orthopyroxenes and olivines. Contrib Mineral Petrol 71:257–270

    Google Scholar 

  • Saxena SK (1973) Thermodynamics of rock forming crystalline solutions. Springer, Berlin Heidelberg, New York, p 188

    Google Scholar 

  • Saxena SK (1979) Garnet-clinopyroxene geothermometer. Contrib Mineral Petrol 70:229–235

    Google Scholar 

  • Saxena SK, Erikson G (1983) Theoretical computation of mineral assemblages in pyrolite and lherzolite. J Petrol 24:538–555

    Google Scholar 

  • Sen SK, Bhattacharya A (1984) An orthopyroxene-garnet thermometer and its application to the Madras charnockites. Contrib Mineral Petrol 88:64–71

    Google Scholar 

  • Sen SK, Bhattacharya A (1987) An assessment of orthopyroxenegarnet thermometry in granulite terranes. Ind J Geol 59:265–277

    Google Scholar 

  • Srikantappa C, Raith M, Ackermand D (1985) High grade regional metamorphism of ultramafic and mafic rocks from the Archean Sargurterrane, Karnataka, South India. Precamb Res 30:189–219

    Article  Google Scholar 

  • Wells PRA (1979) Chemical and thermal evolution of Archean Sialic crust, Southern West Greenland. J Petrol 20:187–226

    Google Scholar 

  • Wood BJ (1974) The solubility of alumina in orthopyroxene coexisting with garnet. Contrib Mineral Petrol 46:1–15

    Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationship in simple ans complex systems. Contrib Mineral Petrol 42:109–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paria, P., Bhattacharya, A. & Sen, S.K. The reaction garnet+clinopyroxene+quartz =2 orthopyroxene+anorthite: A potential geobarometer for granulites. Contr. Mineral. and Petrol. 99, 126–133 (1988). https://doi.org/10.1007/BF00399372

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399372

Keywords

Navigation