Skip to main content
Log in

Organization and chromosomal location of the major histone cluster in brown trout, Atlantic salmon and rainbow trout

  • Original Articles
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The major histone cluster (hisDNA) was mapped by fluorescent in situ hybridization (FISH) to mitotic chromosomes of Atlantic salmon, brown trout, and rainbow trout. The data reveal that in the three species hisDNA is tandemly repeated in a single locus. Southern blots of genomic DNA indicate that these clusters are representative of the vast majority of the histone genes in these species. Similar reiteration values were found among the three species. Genetic variability in the hisDNA was found only in brown trout for an EcoRI site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf FW, Thorgard GH (1984) Tetraploidy and the evolution of the salmonid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum, New York, pp 1–53

    Google Scholar 

  • Connor W, Mezquita J, Winkfein J, States JC, Dixon GH (1984a) Organization of the histone genes in the rainbow trout (Salmo gairdneri). J Mol Evol 20:227–235

    Google Scholar 

  • Connor W, States JC, Mezquita J, Dixon JC (1984b) organization and nucleotide sequence of rainbow trout histones H2A and H3 genes. J Mol Evol 20:236–250

    Google Scholar 

  • Dalgleish R (1987) Gene cloning and analysis: a laboratory guide. Blackwell Scientific Publications

  • D'Andrea RJ, Coles LS, Lesnikowski C, Tabe L, Wells JRE (1985) Chromosomal organization of chicken histone genes: Preferred associations and inverted duplications. Mol Cell Biol 5:3108–3115

    Google Scholar 

  • Delany ME, Bloom SE (1984) Replication banding patterns in the chromosomes of rainbow trout. J Hered 75:431–434

    Google Scholar 

  • Englander E, Moav B (1989) Cloning and characterization of a histone gene family in Tilapia fish. Biochim Biophys Acta 1007:277–282

    Google Scholar 

  • Fitch HA, Strausbaugh LD, Barrett V (1990) On the origin of tandemly repeated genes: Does histone gene copy number in Drosophila reflect chromosomal location? Chromosoma 99:118–124

    Google Scholar 

  • Freije JP, Pendás AM, Velasco G, Roca A, Abrahamson M, López-Otín C (1993) Localization of the human cystatin D gene to chromosome 20p11.21 by in situ hybridization. Cytogenet Cell Genet 62:29–131

    Google Scholar 

  • Gall JG, Stephenson CE, Erba HP, Diaz MO, Barsacchi-Pilone G (1981) Histone genes are located at the sphere loci of newt Lampbrush chromosomes. Chromosoma 84:159–171

    Google Scholar 

  • Hammilton KE, Ferguson A, Taggart JB, Tomasson T, Walker A, Fahy E (1989) Postglacial colonisation of Brown trout (Salmo trutta): LDH-5 as a phylogeographic marker. J Fish Biol 35:651–664

    Google Scholar 

  • Hankeln T, Schmidt ER (1991) The organization, localization and nucleotide sequence of the histone genes of the midge Chironomus thummi. Chromosoma 101:25–31

    Google Scholar 

  • Hartley SE (1987) The chromosomes of salmonid fishes. Biol Rev 62:197–214

    Google Scholar 

  • Hartley SE, Horne MT (1984) Chromosome polymorphism and constitutive heterochromatin in the Atlantic salmon Salmo salar. Chromosoma 89:377–380

    Google Scholar 

  • Macleod AR, Wong NCW, Dixon GH (1977) The aminoacid sequence of trout testis histone H1. Eur J Biochem 78:281–291

    Google Scholar 

  • Maxson R, Mohun T, Gormezano G, Childs G, Kedes L (1983a) Distinct organizations and patterns of expression of early and late histone gene sets in the sea urchin. Nature 301:120–125

    Google Scholar 

  • Maxson M, Cohn R, Kedes L (1983b) Expression and organization of histone genes. Annu Rev Genet 17:239–277

    Google Scholar 

  • May B, Stoneking M, Wright JE (1980) Joint segregation of biochemical loci in salmonidae. II. Linkage association from a hybridised Salvelinus genome (S. Namaycush x S. fontinalis). Genetics 95:707–726

    Google Scholar 

  • Mayr B, Kalat M, Rab P (1988) Heterochromatin and band karyotypes of three species of salmonids. Theor Appl Genet 76:45–53

    Google Scholar 

  • Megowan C, Davidson WS (1992) Unidirectional natural hybridisation between brown trout (Salmo trutta) and atlantic salmon (S. salar) in Newfoundland. Can J Fish Aquat Sci 49:1953–1958

    Google Scholar 

  • Mezquita J, Connor W, Winfkein RJ, Dixon GH (1985) An H1 histone gene from rainbow Trout. J Mol Evol 21:209–219

    Google Scholar 

  • Ohno S (1970) The enormous differences in genome sizes of fish as a reflection of natures's extensive experiments with gene duplication. Trans Am Fish Soc 99:120–130

    Google Scholar 

  • Pendas AM, Morán P, Garcia-Vazquez E (1993a) Ribosomal RNA genes are interspersed throughout a heterochromatic chromosome arm in Atlantic salmon. Cytogenet Cell Genet 63:128–130

    Google Scholar 

  • Pendas AM, Morán P, Garcia-Vazquez E (1993b) Multichromosomal location of ribosomal RNA genes and heterochromatin association in brown trout. Chromosome Res 1:63–67

    Google Scholar 

  • Pendas AM, Morán P, Garcia-Vazquez (1993c) Replication pattern banding in Atlantic salmon. Genome 36:440–444

    Google Scholar 

  • Pendas AM, Morán P, Garcia-Vazquez E (1993d) Improvements to Atlantic salmon anterior kidney metaphase yields following PHA injection. J Fish Biol 42:801–802

    Google Scholar 

  • Philips RB, Hartley SE (1988) Fluorescent banding patterns of the chromosomes of the genus Salmo. Genome 30:193–197

    Google Scholar 

  • Sanchez L, Martinez P, Viñas A, Bouza C (1990) Analysis of the structure and variability of nucleolar organizer regions of Salmo trutta by C-, Ag-, and restriction endonuclease banding. Cytogenet Cell Genet 54:6–9

    Google Scholar 

  • Schmidtke J, Zences MT, Weiler C, Bross K, Engel W (1976) Gene action in fish of tetraploid origin. IV. Ribosomal DNA amount in Clupeoid and Salmonid fish. Biochem Genet 14:293–297

    Google Scholar 

  • Sittman D, Chiu I, Pan C, Cohn R, Kedes L, Marzluff L (1981) Isolation of two clusters of mouse histone genes. Proc Natl Acad Sci USA 78:4078–4820

    Google Scholar 

  • States JC, Connor W, Wosnick MA, Aiken JM, Gedamu L, Dixon GH (1982) Nucleotide sequence of a protamine component CII of gene of Salmo gairdnerii. Nucleic Acids Res 10:4551–4563

    Google Scholar 

  • Taggart JB, Hynes RA, Prodöhl PA, Ferguson A (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. J Fish Biol 40:963–965

    Google Scholar 

  • Triputti P, Emanuel ES, Croce CM, Green LG, Stein GS, Stein JL (1986) Human histone genes map to multiple chromosomes. Proc Natl Acad Sci USa 83:3185–3188

    Google Scholar 

  • Wiegant J, Ried T, Nederlof PM, van derPloeg M, Tanke HJ, Raap AK (1991) In situ hybridization with fluoresceinated DNA. Nucleic Acids Res 19:3237–3241

    Google Scholar 

  • Winkfein RJ, Connor W, Mezquita J, Dixon G (1985) Histone H4 and H2B in rainbow trout (Salmo gairdnerii). J Mol Evol 22:1–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pendás, A.M., Morán, P. & García-Vázquez, E. Organization and chromosomal location of the major histone cluster in brown trout, Atlantic salmon and rainbow trout. Chromosoma 103, 147–152 (1994). https://doi.org/10.1007/BF00352324

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352324

Keywords

Navigation