Skip to main content
Log in

Simultaneous ultrastructural localization of serotonin and cholinesterases in Mytilus byssal retractor muscle (A.B.R.M.)

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

Ultrastructural localization techniques for cholinesterases (ChE) by the Karnovsky method, for monoamines by the technique of Wood, and Tranzer and Richards, and for 5HT by the technique of Wood, were performed on the anterior byssal retractor muscle of Mytilus. Simultaneous ultrastructural localization of 5HT and ChE was obtained by the use of the false neurotransmitter 5,6-DHT, followed by the method of Karnovsky for ChE. The glio-interstitial tissue presents a constant ChE activity, mainly localized on the plasma membrane, even in those processes which accompany tryptaminergic (5HT containing) neurites. Muscle cell membrane also reacts positively to the Karnovsky method. The tryptaminergic neurites themselves do not show any ChE activity; they contain dichromate reactive large (100 nm) dense cored vesicles. The presence of differentiated tryptaminergic neuromuscular junctions, suggested by other authors, is established. It was not possible to distinguish classes of nerve endings by the typology of their vesicular content. It is concluded that one can reasonably plan to study the effect of glial ChE inhibition on the physiology of the tryptaminergic (relaxing) response of the A.B.R.M. to nerve stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albanese A, Butcher LL (1980) Acetylcholinesterase and catecholamine distribution in the locus coeruleus of the rat. Brain Res Bull 5:127–134

    Google Scholar 

  • Baumgarten HG, Bjorklund A, Holstein AF, Nobin A (1972) Chemical degeneration of indolamine axons in rat brain by 5,6-dihydroxytryptamine. Z Zellforsch 129:256–271

    Google Scholar 

  • Baumgarten HG, Bjorklund A, Lachenmayer L, Nobin A, Rosengren E (1973) Evidence for the existence of serotonin-, dopamine- and noradrenaline-containing neurons in the gut of Lampetra fluviatilis. Z Zellforsch 141:33–54

    Google Scholar 

  • Bogusch G (1968) Cholinesteraseaktivität im glatten Penisretraktormuskel der Weinbergschnecke Helix pomatia L. Histochemie 12:345–349

    Google Scholar 

  • Bogusch G (1972) Zur Histochemie der Cholinesterase im Penisretraktor von Helix pomatia. Z mikrosk-Anat Forsch 85:35–49

    Google Scholar 

  • Brestkin AP, Brick IL, Grigor'eva GM (1973) Comparative pharmacology of cholinesterases. In: Michelson MJ (ed) Comparative pharmacology. Pergamon Press, Oxford, vol 1

    Google Scholar 

  • Butcher LL, Talbot K (1978) Acetylcholinesterase in rat nigro-neostriatal neurons-Experimental verification and evidence for cholinergic-dopaminergic interactions in substantia nigra and caudate putamen complex. In: Butcher LL (ed) Cholinergic-monoaminergic interactions in the brain. Academic Press, New York, pp 25–95

    Google Scholar 

  • Cambridge GW, Holgate JA, Sharpe JA (1959) A pharmacological analysis of the contractile mechanisms of Mytilus muscle. J Physiol 148:451–464

    Google Scholar 

  • Chiang PK, Bourgeois JG, Bueding E (1972) Histochemical distribution of acetylcholinesterase in the nervous system of the snail, Biomphalaria glabrata. Int J Neurosci 3:47–60

    Google Scholar 

  • Chubb IW, Hodgson AJ, White GH (1980) Acetylcholinesterase hydrolyzes substance P. Neuroscience 5:2065–2072

    Google Scholar 

  • Das S, Edwardson JA, Hughes D, McDermott JR (1982) Butyrylcholinesterase (BuChE)-positive glial cells in the pituitary intermediate lobe: evidence for their role in the formation of pituitary colloid and that BuChE is an endopeptidase. J Physiol 327:45P

    Google Scholar 

  • Davis R, Koelle GB (1978) Electron microscopic localization of the acetylcholinesterase and butyrylcholinesterase in the superior cervical ganglion of the cat. I. Normal ganglion. J Cell Biol 78:785–809

    Google Scholar 

  • Desmedt JE, La Grutta G (1967) The effect of selective inhibition of pseudo-cholinesterase on the spontaneous and evoked activity of the cat's cerebral cortex. J Physiol 136:20–40

    Google Scholar 

  • Dhainaut-Courtois N, Engelhardt RP, Dhainaut A (1979) Etude cytophysiologique des systèmes monoaminergiques et cholinergiques des Nereis (Annélides Polychètes). I. Système nerveux périphérique et jonctions neuro-musculaires. Arch Biol 90:225–244

    Google Scholar 

  • Elekes K, Hiripi L, Nemcsok J (1977) Ultrastructural effects of 6-hydroxydopamine and 5,6-dihydroxytryptamine on the central nervous system of fresh-water mussel, Anodonta cygnea L. Acta Biol Acad Sci Hung 28:259–272

    Google Scholar 

  • Ellison JP, Olander KW (1972) Simultaneous demonstration of catecholamines and acetylcholinesterase in peripheral autonomic nerves. Am J Anat 135:23–32

    Google Scholar 

  • Eränkö O (1966) Demonstration of catecholamines and cholinesterases in the same section. Pharmacol Rev 18:353–358

    Google Scholar 

  • Etcheverry GJ, Zieher LM (1968) Cytochemistry of 5-hydroxytryptamine at the electron microscope level. I. Study of the specificity of the reaction in isolated blood platelets. J Histochem Cytochem 16:162–171

    Google Scholar 

  • Florey E, Michelson MJ (1973) Occurrence, pharmacology and significance of cholinergic mechanisms in the animal kingdom. In: International encyclopedia of pharmacology and therapeutics, Section 85, vol 1, pp 11–41

  • Germino NI, Castellano MA, Gerard G (1968) Histochemical detection of several enzymes in Cryptomphallus and Blaptica and its relation to neuromuscular transmission. Comp Biochem Physiol 24:711–716

    Google Scholar 

  • Gillette R, Pomeranz B (1975) Ultrastructural correlates of interneuronal function in the abdominal ganglion of Aplysia californica. J Neurobiol 6:463–474

    Google Scholar 

  • Gilloteaux J (1975) Innervation of the anterior byssal retractor muscle (ABRM) in Mytilus edulis L. II. Ultrastructure of the glio-interstitial cells. Cell Tissue Res 161:511–519

    Google Scholar 

  • Gilloteax J (1977) Innervation du muscle antérieur du byssus (ABRM) de Mytilus edulis L. III. Localisation histochimique des terminaisons nerveuses à 5-hydroxytryptamine. Histochemistry 51:343–351

    Google Scholar 

  • Gilloteaux J (1978) Innervation du muscle rétracteur antérieur du byssus (ABRM) de Mytilus edulis L. et de Mytilus galloprovincialis LmK. V. Localisation cytochimique d'activiés cholinestérasiques. Histochemistry 55:209–224

    Google Scholar 

  • Gunn M (1971) Cholinergic mechanisms in the gastro-intestinal tract. J Neurovisc Relat 32:224–240

    Google Scholar 

  • Hanley MR, Cottrell GA, Emson PC, Fonnum F (1974) Enzymatic synthesis of acetylcholine by a serotonin-containing neurone from Helix. Nature 251:631–633

    Google Scholar 

  • Hemming FJ, Nicaise G (1982) Environment-dependent development of glial tissue. Brain Res 245:127–130

    Google Scholar 

  • Hemming FJ, Carpentier P, Nicaise G (1979) Localisation ultrastructurale de cholinestérases dans le tissue glio-interstitiel du muscle rétracteur antérieur (ABRM) de Mytilus edulis (Mollusque, Lamellibranche). Biol Cell 35:29a

  • Heumann R, Villegas J, Herzfeld DW (1981) Acetylcholine synthesis in the Schwann cell and axon in the giant nerve fibre of the squid. J Neurochem 36:765–768

    Google Scholar 

  • Imai H, Nakai K, Kamei I, Itakura T, Komai N, Nagai T, Kimura H, Imamoto K, Maeda (1980) Simultaneous detection method of amine and acetylcholinesterase containing nerve fibers in pial vessels. 2. Electron microscopic study. Cell Mol Biol 26:207–210

    Google Scholar 

  • Ivens C, Mottram DR, Lever JD, Presly R, Howells G (1973) Studies on the acetylcholinesterase (AChE)-positive and-negative autonomic axons supplying smooth muscle in the normal and 6-hydroxydopamine (6-OHDA) treated rat iris. Z Zellforsch 138:211–222

    Google Scholar 

  • Jacobowitz D, Koelle GB (1965) Histochemical correlations of acetylcholinesterase and catecholamines in post-ganglionic autonomic nerves of the cat, rabbit, and guinea-pig. J Pharmacol Exp Ther 148:225–237

    Google Scholar 

  • Karnovsky MJ (1964) The localization of cholinesterase activity in rat cardiac muscle by electron microscopy. J Cell Biol 23:217–232

    Google Scholar 

  • Koelle GB (1963) Cytological distributions and physiological functions of cholinesterase. In: Handbuch der experimentellen Pharmakologie, Vol 15. Springer, Berlin Göttingen Heidelberg, pp 187–298

    Google Scholar 

  • Korn E (1969) Cholinesterase activity in the tissues of the sanil Helix aspersa. Comp Biochem Physiol 28:923–930

    Google Scholar 

  • Loe PR, Florey E (1966) The distribution of acetylcholine and cholinesterase in the nervous system and in innervated organs of Octopus dofleini. Comp Biochem Physiol 17:509–522

    Google Scholar 

  • Majcen Z, Brzin M (1979) Cholinesterases and choline acetyltransferase in the longitudinal muscle of the guinea-pig ileum. Histochemistry 63:295–302

    Google Scholar 

  • McCaman RE, McCaman MW (1976) Biology of individual cholinergic neurons in the invertebrate central nervous system. In: Goldberg AM, Hanin I (eds) Biology of cholinergic function. Raven Press, New York, pp 485–514

    Google Scholar 

  • McKenna OC, Rosenbluth J (1973) Myoneural and intermuscular junctions in a molluscan smooth muscle. J Ultrastruct Res 42:434–450

    Google Scholar 

  • Nicaise G (1969) Detection histochimique de cholinestérases dans les cellules gliales et interstitielles des Doridiens. CR Soc Biol 163:2600–2604

    Google Scholar 

  • Nicaise G (1970) Cytochimie ultrastructurale des granules glio-interstitiels d'un Gastéropode. Microscopie Electronique (VIIth Intl Congress, Grenoble) 3:677–678

    Google Scholar 

  • Nicaise G (1973) The gliointerstilial system of molluscs. Int Rev Cytol 34:251–332

    Google Scholar 

  • Nicaise G, Amsellem J (1983) Cytology of muscle and neuromuscular junction. In: Wilbur KM (ed) The mollusca. Vol 5: Biochemistry and physiology. Academic Press, New York

    Google Scholar 

  • Pearse AGE (1972) Histochemistry, theoretical and applied, Vol 2. Churchill-Livingstone, Edinburgh and London

    Google Scholar 

  • Pentreath VW (1976) Ultrastructure of the terminals of an identified 5-hydroxytryptamine-containing neurone marked by intracellular injection of radioactive 5-hydroxytryptamine. J Neurocytol 5:43–61

    Google Scholar 

  • Peretz B, Estes J (1974) Histology and histochemistry of the peripheral neural plexus in the Aplysia gill. J Neurobiol 5:3–20

    Google Scholar 

  • Satchell DG, Twarog BM (1978) Identification of 5-hydroxytryptamine (serotonin) released from the anterior byssus retractor muscle of Mytilus californianus in response to nerve stimulation. Comp Biochem Physiol 59:81–86

    Google Scholar 

  • Sathananthan AH (1976) Degeneration of monoamine nerves in anterior byssus retractor muscles of Mytilus induced by 5,6-dihydroxytryptamine. Cell Tissue Res 172:425–429

    Google Scholar 

  • Shkolnik LJ, Schwartz JH (1980) Genesis and maturation of serotonergic vesicles in identified giant cerebral neuron of Aplysia. J Neurophysiol 43:929–944

    Google Scholar 

  • Silver A (1974) The biology of cholinesterases. Frontiers of Biology. North-Holland, Amsterdam Oxford, Vol 36

    Google Scholar 

  • Tauc L (1977) Transmitter release at cholinergic synapses. In: Cottrell GA, Usherwood PNR (eds) Synapses. Blackie, Glasgow, pp 64–78

    Google Scholar 

  • Tauc L (1982) Nonvesicular release of neurotransmitter. Physiol Rev 62:857–893

    Google Scholar 

  • Taxi J, Gautron J (1969) Données cytochimiques en faveur de l'existence de fibres nerveuses sérotoninergiques dans le coeur de l'Aplysie, Aplysia californica. J Microsc 8:627–636

    Google Scholar 

  • Teravainen H (1969) Ultrastructural distribution of cholinesterase activity in the ventral nerve cord of the earthworm, Lumbricus terrestris. Histochemie 18:177–190

    Google Scholar 

  • Thompson EB, Schwartz JH, Kandel ER (1976) A radioautographic analysis in the light and electron microscope of identified Aplysia neurons and their processes after intrasomatic injection of L-3H fucose. Brain Res 112:251–281

    Google Scholar 

  • Thuneberg L (1982) Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol 71:1–130

    Google Scholar 

  • Thureson-Klein A, Klein RL, Yen SS (1973) Ultrastructure of highly purified sympathetic nerve vesicles: correlation between matrix density and norepinephrine content. J Ultrastruct Res 43:18–35

    Google Scholar 

  • Trandaburu T (1972) Comparative observations on AChE distribution in pancreas of some amphibians, reptiles and birds, with special reference to the islets of Langerhans. Histochemie 32:271–279

    Google Scholar 

  • Tranzer JP, Richards JG (1976) Ultrastructural cytochemistry of biogenic amines in nervous tissue: methodologic improvements. J Histochem Cytochem 24:1178–1193

    Google Scholar 

  • Treherne JE, Smith DS (1965) The metabolism of acetylcholine in the intact central nervous system of an insect (Periplaneta americana L.). J Exp Biol 43:441–454

    Google Scholar 

  • Twarog BM (1954) Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J Cell Comp Physiol 44:141–163

    Google Scholar 

  • Twarog BM (1976) Aspects of smooth muscle function in molluscan catch muscle. Physiol Rev 56:829–838

    Google Scholar 

  • Twarog BM, Muneoka Y, Ledgere M (1977) Serotonin and dopamine as neurotransmitters in Mytilus: block of serotonin receptors by an organic mercurial. J Pharmacol Exp Ther 201:350–356

    Google Scholar 

  • Villegas J (1975) Characterization of acetylcholine receptors in the Schwann cell membrane of the squid nerve fibre. J Physiol 249:679–689

    Google Scholar 

  • Villegas J (1978a) Cholinergic systems in axon-Schwann cell interactions. Trends Neurosci 1:66–69

    Google Scholar 

  • Villegas J (1978b) Acetylcholine mediated axon-Schwann cell relationship in the squid nerve fiber. In: Jenden DJ (ed) Cholinergic mechanism and psychopharmacology. Plenum Press, New York, pp 387–399

    Google Scholar 

  • Villegas GM, Villegas J (1974) Acetylcholinesterase localization in the giant nerve fiber of the squid. J Ultrastruct Res 46:149–163

    Google Scholar 

  • Wallace BG (1981) Distribution of AChE in cholinergic and non-cholinergic neurons. Brain Res 219:190–195

    Google Scholar 

  • Watts JA, Pierce SK (1978) Acetylcholinesterase: a useful marker for the isolation of sarcolemma from the bivalve (Modiolus demissus demissus) myocardium. J Cell Sci 34:193–208

    Google Scholar 

  • Winners W, Neef J, von Wachtendonk D (1978) Distribution of cholinesters and cholinesterases in haemolymphs and smooth muscles of molluscs. Comp Biochem Physiol C 61:121–132

    Google Scholar 

  • Wood JG (1965) Electron microscopic localization of 5-hydroxytryptamine (5-HT). Texas Reports Biol Med 4:828–837

    Google Scholar 

  • Wood JG (1966) Electron microscopic localization of amines in central nervous tissue. Nature 209:1131–1133

    Google Scholar 

  • Wood JG (1967) Cytochemical localization of 5-hydroxytryptamine (5HT) in the central nervous system. Anat Rec 157:343–344

    Google Scholar 

  • Wood JG, Barrnett RJ (1964) Histochemical demonstration of norepinephrine at a fine structural level. J Histochem Cytochem 12:197–209

    Google Scholar 

  • Zs.-Nagy I (1964) A histochemical study of cholinesterase on the adductor muscle of the fresh water mussel (Anodonta cygnea L.). Ann Biol Tihany 31:153–157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the C.N.R.S., L.A. 040 244, and post-doctoral fellowship to R. Aramant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemming, F.J., Aramant, R. & Nicaise, G. Simultaneous ultrastructural localization of serotonin and cholinesterases in Mytilus byssal retractor muscle (A.B.R.M.). Histochemistry 77, 495–510 (1983). https://doi.org/10.1007/BF00495804

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00495804

Keywords

Navigation