Skip to main content
Log in

A theory of large-strain isotropic thermoplasticity based on metric transformation tensors

  • Originals
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

A formulation of isotropic thermoplasticity for arbitrary large elastic and plastic strains is presented. The underlying concept is the introduction of a metric transformation tensor which maps a locally defined six-dimensional plastic metric onto the metric of the current configuration. This mixed-variant tensor field provides a basis for the definition of a local isotropic hyperelastic stress response in the thermoplastic solid. Following this fundamental assumption, we derive a consistent internal variable formulation of thermoplasticity in a Lagrangian as well as a Eulerian geometric setting. On the numerical side, we discuss in detail an objective integration algorithm for the mixed-variant plastic flow rule. The special feature here is a new representation of the stress return and the algorithmic elastoplastic moduli in the eigenvalue space of the Eulerian plastic metric for plane problems. Furthermore, an algorithm for the solution of the coupled problem is formulated based on an operator split of the global field equations of thermoplasticity. The paper concludes with two representative numerical simulations of thermoplastic deformation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand, L.: Constitutive equations for hot-working of metals. Int. J. Plasticity 1 (1985) 213–231

    Google Scholar 

  2. Argyris, J. H.;Doltsinis, J. St.: On the natural formulation and analysis of large deformation coupled thermomechanical problems. Comp. Meth. Appl. Mech. Eng. 25 (1981) 195–253

    Google Scholar 

  3. Besdo, D.: Zur Formulierung von Stoffgesetzen der Plastomechanik im Dehnungsraum nach Ilyushins Postulat. Ing. Arch. 51 (1981) 1–8

    Google Scholar 

  4. Bever, M. B.;Holt, D. L.;Titchener, A. L.: The stored energy of cold work. Oxford: Pergamon Press 1973

    Google Scholar 

  5. Coleman, B. D.;Gurtin, M. E.: Thermodynamics with internal state variables. J. Chemistry and Physics 47 (1967) 597–613

    Google Scholar 

  6. Cuitiño, A. M.;Ortiz, M.: A material — independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Eng. Comput. 9 (1992) 437–451

    Google Scholar 

  7. Dillon, O. W.: Coupled thermoplasticity. J. Mech. Phys. Solids 11 (1963) 21–33

    Google Scholar 

  8. Doltsinis, J. St.: Aspects of modelling and computation in the analysis of metal forming. Eng. Comput. 7 (1990) 2–20

    Google Scholar 

  9. Drucker, D. C.: A more fundamental approach to plastic stress-strain relations. Proc. first U.S. National Congress of Applied Mechanics, Chicago, June 11–16, 1951, pp. 487–491

  10. Eckart, E.: The thermodynamics of irreversible processes: IV. The theory of elasticity and anelasticity. Phys. Rev. 73 (1948) 337–382

    Google Scholar 

  11. Germain, P.;Nguyen, Q. S.;Suquet, P.: Continuum thermodynamics. Trans. ASME/J. Appl. Mech. 50 (1983) 1010–1020

    Google Scholar 

  12. Green, A. E.;Naghdi, P. M.: A general theory of an elasto-plastic continuum. Arch. Rat. Mech. Analysis 18 (1965) 251–281

    Google Scholar 

  13. Green, A. E.;Naghdi, P. M.: Some remarks on elastic-plastic deformation at finite strains. Int. J. Eng. Science 9 (1971) 1219–1229

    Google Scholar 

  14. Kratochvil, J.: On a finite strain theory of elastic-inelastic Materials. Acta Mechanica 16 (1973) 127–142

    Google Scholar 

  15. Krawietz, A.: Passivität, Konvexität und Normalität bei elastisch-plastischen Material. Ing. Arch. 51 (1981) 257–274

    Google Scholar 

  16. Lee, E. H.: Elastic-plastic deformation at finite strains. Trans. ASME Ser. E: J. Appl. Mech. 36 (1969) 1–6

    Google Scholar 

  17. Lehmann, T.: Einige Bemerkungen zu einer Klasse von Stoffgesetzen für große elasto-plastische Formänderungen. Ing. Arch. 41 (1972) 297–310

    Google Scholar 

  18. Lehmann, T.: General frame for the definition of constitutive laws for large non-isothermal elastic-plastic and elastic-viscoplastic deformations. In: Lehmann, T. (ed.) The Constitutive Law in Thermoplasticity, CISM Courses and Lectures No. 281. Berlin: Springer 1984

    Google Scholar 

  19. Lemonds, J.;Needleman, A.: Finite element analysis of shear localization in rate and temperature dependent solids. Mech. Mater. 5 (1986) 339–361

    Google Scholar 

  20. Lubliner, J.: Normal rules in large-deformation plasticity. Mech. Mater. 5 (1986) 29–34

    Google Scholar 

  21. Lubliner, J.: Non-isothermal generalized plasticity. In: Bui, H. D.; Nguyen, Q. S. (eds.) Thermomechanical Coupling in Solids pp. 121–131

  22. Mandel, J.: Plasticité classique et viscoplasticité. CISM Courses and Lectures No. 97. Berlin: Springer 1972

    Google Scholar 

  23. Mandel, J.: Thermodynamics and plasticity. In: Delgado Domingers, J. J.; Nina, N. R.; Whitelaw, J. H. (eds.) Foundation of Continuum Thermodynamics, pp. 283–304. London: Macmillan 1974

    Google Scholar 

  24. Miehe, C.: On the representation of Prandtl-Reuss tensors within the framework of multiplicative elasto-plasticity. Int. J. Plasticity 10 (1994) 609–621

    Google Scholar 

  25. Miehe, C.: Computation of isotropic tensor functions. Commun. Appl. Numer. Methods 9 (1983) 889–896

    Google Scholar 

  26. Miehe, C.: Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int. J. Num. Meth. Eng. 37 (1994) 1981–2004

    Google Scholar 

  27. Miehe, C.: Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation. Comp. Meth. Appl. Mech. Eng. 120 (1995) 243–269

    Google Scholar 

  28. Miehe, C.: A generalization of Melan-Prager-Type kinematic hardening to large-strain elastoplasticity based on hyperelastic internal micro-stress response. Acta Mechanica (in press)

  29. Miehe, C.;Stein, E.: A canonical model of multiplicative elastoplasticity: Formulation and aspects of the numerical implementation. European J. Mech. A/Solids 11 (1992) 25–43

    Google Scholar 

  30. Rice, J. R.: Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19 (1971) 433–455

    Google Scholar 

  31. Simo, J. C.;Miehe, C.: Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. Comp. Meth. Appl. Mech. Eng. 98 (1992) 41–104

    Google Scholar 

  32. Simo, J. C.;Armero, F.: Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes. Int. J. Num. Meth. Eng. 33 (1992) 1413–1449

    Google Scholar 

  33. Simo, J. C.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comp. Meth. Appl. Mech. Eng. 99 (1992) 61–112

    Google Scholar 

  34. Truesdell, C.;Noll, W.: The nonlinear field theories of mechanics. In: Handbuch der Physik Bd. III/3. Berlin: Springer 1965

    Google Scholar 

  35. Weber, G.;Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comp. Meth. Appl. Mech. Eng. 79 (1990) 173–202

    Google Scholar 

  36. Wriggers, P.;Miehe, C.;Kleiber, M.;Simo, J. C.: On the coupled thermomechanical treatment of necking problems via finite element methods. Int. J. Num. Meth. Eng. 33 (1992) 869–883

    Google Scholar 

  37. Zienkiewicz, O. C.;Taylor, R. L.: The Finite Element Method. London: McGraw-Hill 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miehe, C. A theory of large-strain isotropic thermoplasticity based on metric transformation tensors. Arch. Appl. Mech. 66, 45–64 (1995). https://doi.org/10.1007/BF00786688

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00786688

Key words

Navigation