Skip to main content
Log in

Relationship between myoelectric and mechanical manifestations of fatigue in the quadriceps femoris muscle group

  • Original Article
  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Abstract

Fatigue is commonly defined as “the failure to maintain the required force”. As such, it may be argued that the use of electromyographic (EMG) power spectral statistics to monitor muscle fatigue is inappropriate, because, during the maintenance of a submaximal force of contraction, EMG changes are readily observable in the absence of any decline in the muscle's mechanical output. However, it is possible that the EMG changes reflect the changing metabolic status of the muscle and hence its inability to generate its normal maximal force. The present study sought to examine whether the decline in EMG median frequency, which occurs during the maintenance of a submaximal force, is correlated with a reduction in the muscle's maximum force-generating capacity. The maximum voluntary contraction (MVC) of the knee extensors in ten young, healthy subjects was determined. On five separate occasions, randomly assigned forces of 20, 30, 40, 50 and 60% MVC were held to the limit of endurance. At intervals throughout the sustained contractions, subjects were required to rapidly generate an MVC for 1–2 s, then return to the fixed submaxial target force. Surface EMG signals were recorded throughout the contractions from the rectus lemons and vastus lateralis muscles, from which the power spectrum median frequency was calculated. Regression analysis revealed highly significant relationships between the rate of decline in MF and the rate of decline in MVC, and between each of these parameters and endurance time to fatigue (P = 0.0001, in each case). It is concluded that the decline in MF can be used to monitor fatigue, where fatigue is defined as the inability to generate the maximum force that can be produced by the muscle in its fresh state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashley GC, Ridgway EB (1970) On the relationship between membrane potential, calcium transient and tension in single barnacle muscle fibres. J Physiol (Lond) 209:105–130

    CAS  Google Scholar 

  • Beliveau L, Helal J, Gaillard E, Van Hoecke J, Atlan G, Bouissou P (1991) EMG spectral shift- and 31P-NMR-determined intracellular pH in fatigued human biceps brachii muscle. Neurology 41:1998–2001

    CAS  PubMed  Google Scholar 

  • Bouissou P, Estrade PV, Goubel F, Guezennec CY, Serrurier B (1989) Surface EMG power spectrum and intramuscular pH in human vastus lateralis muscle during dynamic exercise. J Appl Physiol 67:1245–1249

    CAS  PubMed  Google Scholar 

  • Brody LR, Pollock MT, Roy SH, DeLuca CJ, Celli B (1991) pH induced effects on median frequency and conduction velocity of the myoelectric signal. J Appl Physiol 71:1878–1885

    CAS  PubMed  Google Scholar 

  • Ciba Foundation Porter R, Whelan J (eds) (1981) Human muscle fatigue:physiological mechanisms. Symposium 82, Pitman Medical, London.

    Google Scholar 

  • Cooke R, Franks K, Luciani GB, Pate E (1988) The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. J Physiol (Lond) 395:77–97

    CAS  Google Scholar 

  • Donaldson SKB, Hermansen L (1978) Differential direct effects of H on Ca2+ activated force of skinned fibres from the soleus, cardiac and adductor magnus muscle of rabbits. Pflügers Arch 376:55–65

    CAS  PubMed  Google Scholar 

  • Edwards RHT, Hill DK, McDonell M (1972) Myothermal and intramuscular pressure measurements during isometric contractions of the human quadriceps muscle. J Physiol (Lond) 224:58P-59P

    CAS  Google Scholar 

  • Fabiato A, Fabiato F (1978) Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol (Lond) 276:233–235

    CAS  Google Scholar 

  • Gerdle B, Henriksson-Larson K, Lorentzon R, Wretling ML (1991) Dependence of the mean power frequency of the electromyogram on muscle force and fibre type. Acta Physiol Scand 142:457–465

    CAS  PubMed  Google Scholar 

  • Hagberg M (1981) Muscular endurance and surface electromyogram in isometric and dynamic exercise. J Appl Physiol 51:1–7

    CAS  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129

    Article  CAS  PubMed  Google Scholar 

  • Jones DA (1981) Human muscle fatigue due to changes beyond the neuromuscular junction. In: Human muscle fatigue: physiological mechanisms, Ciba Foundation Symposium 82. Pitman Medical, London pp 178–192

    Google Scholar 

  • Juel C (1988) Muscle action potential changes during activity. Muscle Nerve 11:714–719

    Article  CAS  PubMed  Google Scholar 

  • Katz A, Sahlin K, Henriksson J (1986) Muscle ATP turnover rate during isometric contraction in humans. J Appl Physiol 60:1839–1842

    CAS  PubMed  Google Scholar 

  • Kuorinka I (1988) Restitution of EMG spectrum after muscular fatigue. Eur J Appl Physiol 57:311–315

    Article  CAS  Google Scholar 

  • Mannion AF, Dolan P (1994) Electromyographic median frequency changes during isometric contraction of the back extensors to fatigue. Spine 19:1223–1229

    CAS  PubMed  Google Scholar 

  • Mannion AF, Jakeman PM, Willan PLT (1995) Skeletal muscle buffer value, fibre type distribution and high intensity exercise performance in man. Exp Physiol 80:89–101

    CAS  PubMed  Google Scholar 

  • Mannion AF, Dumas GD, Stevenson JM, Espinosa FJ, Farts MW, Cooper RG (1996) Muscle fibre size and type distribution of the back extensors: relationship with muscle fatigability. Br J Rheumatol 35 [Suppl 1]:144

    Google Scholar 

  • Maughan RJ, Watson JS, Weir J (1983) Strength and crosssectional area of human skeletal muscle. J Physiol (Lond) 338:37–49

    CAS  Google Scholar 

  • Merletti R, Knaflitz M, DeLuca CJ (1992) Electrically evoked myoelectric signals Crit Rev Biomed Engl 19:293–340

    CAS  Google Scholar 

  • Miller RG, Giannini D, Milner-Brown H, Layzer R, Koretsky A (1987) Effects of fatiguing exercise on high-energy phosphates, force and EMG: evidence for three phases of recovery. Muscle Nerve 10:810–821

    CAS  PubMed  Google Scholar 

  • Miller RG, Boska MD, Moussavi RS, Carson PJ, Weiner MW (1988) 31P Nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. Comparison of aerobic and anaerobic exercise. J Clin Invest 81:1190–1196

    CAS  PubMed  Google Scholar 

  • Mills KR, Edwards RHT (1984) Muscle fatigue in myophosphorylase deficiency: power spectral analysis of the electromyogram. Electroencephalogr Clin Neurophysiol 57:330–335

    CAS  Google Scholar 

  • Polgar J, Johnson MA, Weightman D, Appleton D (1973) Data on fibre size in thirty-six human muscles. An autopsy study. J Neurol Sci 19:307–318

    Article  CAS  PubMed  Google Scholar 

  • Sahlin K (1992) Metabolic factors in fatigue. Sports Med 13:99–107

    CAS  PubMed  Google Scholar 

  • Sahlin K, Broberg S (1991) Adenine nucleotide depletion in human muscle during exercise: causality and significance of AMP deamination. Int J Sport Med 11 [Suppl 2]:S62-S67

    Google Scholar 

  • Sahlin K, Ren JM (1989) Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J Appl Physiol 67:648–654

    CAS  PubMed  Google Scholar 

  • Sjøgaard G (1991) Role of exercise-induced potassium fluxes underlying muscle fatigue: a brief review. Can J Physiol Pharmacol 69:238–245

    PubMed  Google Scholar 

  • Van Dieen JH, Oude Vrielink HHE (1994) Fatigue during lowintensity contractions of the triceps surae musle. Proceedings of the Tenth Congress of the International Society of Electrophysiology and Kinesiology Shiavi R, Wolf S (eds) Charleston, S.C., USA 58–59

    Google Scholar 

  • Vestergaard-Poulsen P, Thomsen C, Sinkjaer T, Stubgaard M, Rosenfalck A, Henriksen O (1992) Simultaneous electromyography and 31P nuclear magnetic resonsance spectroscopy — with application to muscle fatigue. Electroencephalogr Clin Neurophysiol 85:402–411

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannion, A.F., Dolan, P., Mannion, A.F. et al. Relationship between myoelectric and mechanical manifestations of fatigue in the quadriceps femoris muscle group. Europ. J. Appl. Physiol. 74, 411–419 (1996). https://doi.org/10.1007/BF02337721

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02337721

Key words

Navigation