Skip to main content
Log in

Electrical coupling of photoreceptors in retinal network models

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The spatial width of photoreceptor receptive fields affects the processing of signals in neural networks of the retina. This effect has been examined using the simple recurrent and non-recurrent network models, where lateral interaction strength was adjusted to approximate a prescribed receptive field profile. The results indicate that the optimal performance of the networks is obtained with photoreceptor receptive fields wider than the ganglion cell separation. It is thus concluded that while electrical coupling of photoreceptors in the retina reduces the intrinsic noise in the system, it also improves the sampling efficiency of the laterally coupled neural network of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, H.B., Fitzhugh, R., Kuffler, S.W.: Change of organization in the receptive fields of the cat's retina during dark adaptation. J. Physiol. (London) 137, 338–354 (1957)

    Google Scholar 

  • Baylor, D.A., Fuortes, M.G.F., O'Bryan, P.M.: Receptive fields of cones in the retina of the turtle. J. Physiol. (London) 214, 265–294 (1971)

    Google Scholar 

  • Baylor, D.A., Hodgkin, A.L.: Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. (London) 234, 163–198 (1973)

    Google Scholar 

  • Brodie, S.E., Knight, B.W., Ratliff, F.: The spatiotemporal transfer function of the Limulus lateral eye. J. Gen. Physiol. 72, 167–202 (1978)

    Google Scholar 

  • Cochran, W.T., Cooley, J.W., Favin, D.L., Helms, H.D., Kaenel, R.A., Lang, W.W., Maling, G.C., Nelson, D.E., Rader, C.M., Welch, P.D.: What is a fast Fourier transform? IEEE Trans. Audio Electroacoust. AU-15, 45–55 (1967)

    Google Scholar 

  • Copenhagen, D.R., Owen, W.G.: Functional characteristics of lateral interaction between rods in the retina of the snapping turtle. J. Physiol. (London) 259, 251–282 (1976)

    Google Scholar 

  • Detwiler, P.B., Hodgkin, A.L., McNaughton, P.A.: A surprising property of electrical spread in the network of rods in the turtle's retina. Nature (London) 274, 562–565 (1978)

    Google Scholar 

  • Fain, G.L.: Quantum sensitivity of rods in the toad retina. Science 187, 838–841 (1975)

    Google Scholar 

  • Falk, G., Fatt, P.: Physical changes induced by light in the rod outer segment of vertebrates. In: Handbook of sensory physiology, Vol. VII/1: Photochemistry of vision. Dartnall, H.J.A. (ed.). Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  • Hartline, H.K., Ratliff, F.: Inhibitory interaction of receptor units in the eye of Limulus. J. Gen. Physiol. 40, 357–376 (1957)

    Google Scholar 

  • Ikeda, H., Wright, M.J.: The outer disinhibitory surround of the retinal ganglion cell receptive field. J. Physiol. (London) 226, 511–544 (1972)

    Google Scholar 

  • Krausz, H.I., Naka, K.: Spatiotemporal testing and modelling of catfish retinal neurons. Biophys. J. 29, 13–36 (1980)

    Google Scholar 

  • Lamb, T.D., Simon, E.J.: The relation between intercellular coupling and electrical noise in turtle photoreceptors. J. Physiol. 263, 257–286 (1976)

    Google Scholar 

  • Marčelja, S.: Initial processing of visual information within the retina and the LGN. Biol. Cybernetics 32, 217–226 (1979a)

    Google Scholar 

  • Marčelja, S.: Optimal lateral interactions in a compound eye. J. Comp. Physiol. A 132, 159–166 (1979b)

    Google Scholar 

  • Marčelja, S.: Mathematical description of the responses of simple cortical cells. J. Opt. Soc. Am. (in press) (1980)

  • Mersereau, R.M.: The processing of hexagonally sampled two-dimensional signals. Proc. IEEE 67, 930–949 (1979)

    Google Scholar 

  • Monasterio, F.M. de: Center and surround mechanisms of opponent-color X and Y ganglion cells of macaques. J. Neurophysiol. 41, 1418–1434 (1978)

    Google Scholar 

  • Ratliff, F., Knight, B.W., Graham, N.: On tuning and amplification by lateral inhibition. Proc. Natl. Acad. Sci. USA 62, 733–740 (1969)

    Google Scholar 

  • Reichardt, W.: Über das optische Auflösungsvermögen der Facettenaugen von Limulus. Kybernetik 1, 57–69 (1961)

    Google Scholar 

  • Robson, J.G., Enroth-Cugell, C.: Light distribution in the cat's retinal image. Vision Res. 18, 159–173 (1978)

    Google Scholar 

  • Schwartz, E.A.: Responses of single rods in the retina of the turtle. J. Physiol. (London) 232, 503–514 (1973)

    Google Scholar 

  • Schwartz, E.A.: Electrical properties of the rod syncytium in the retina of the turtle. J. Physiol. (London) 257, 379–406 (1976)

    Google Scholar 

  • Varjú, D.: Vergleich zweier Modelle für laterale Inhibition. Kybernetik 1, 200–208 (1962)

    Google Scholar 

  • Werblin, F.S.: Synaptic input to bipolar cells. In: Vertebrate photoreception. Barlow, H.B., Fatt, P. (ed.). London, New York, San Francisco: Academic Press 1977

    Google Scholar 

  • Westheimer, G.: Optical properties of vertebrate eyes. In: Handbook of sensory physiology, Vol. VII/2. Fuortes, M.G.F. (ed.). Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marčelja, S. Electrical coupling of photoreceptors in retinal network models. Biol. Cybern. 39, 15–20 (1980). https://doi.org/10.1007/BF00336940

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336940

Keywords

Navigation