Skip to main content
Log in

Migration and division of cleavage nuclei in the gall midge,Wachtliella persicariae

III. Pattern of anaphase-triggering waves altered by temperature gradients and local gas exchange

  • Published:
Wilhelm Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The control of nuclear division and migration was studied in time-lapse films of the multinucleate egg cell of a gall midge by experimental alterations of the mitotic pattern. During each cleavage cycle, a wave of randomly oriented saltations of yolk particles (WROS) is seen to travel through the ooplasm. This wave proved to be an indispensable prerequisite for the accompanying anaphase wave and for the activation of the nuclear migration cytasters: WROS cycles can occur autonomously without cleavage nuclei being present, but there is no anaphase without a WROS passing the dividing nucleus. WROSs and mitotic waves can be inverted, and the WROS cycles and the cleavage cycles can be desynchronized by temperature grandients or by locally impaired gas exchange. If a nucleus is not ready for anaphase when met by a WROS, it will only divide in the course of the next WROS. WROSs thus indicate autonomous anaphase-triggering waves governing the cleavage divisions. Rhythmic ooplasmic movements continue even if the WROSs as well as the nuclear divisions are inhibited by colchinine. The characteristics of the WROSs support the hypothesis that each of them is the visible effect of a wave of calcium release (similar to that established in vertebrate eggs) which acts locally on the microtubular system and may continue even if the WROSs are suppressed. The correlations between a possible calcium release, WROS activity, microtubule disassembly and nuclear cycle are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Counce SJ (1973) The causal analysis of insect embryogenesis. In: Counce SJ, Waddington CH (eds) Developmental systems: Insects. Academic Press, London/New York, pp 1–156

    Google Scholar 

  • Foe VE, Alberts BM (1983) Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation inDrosophila melanogaster. J Cell Sci 61:31–70

    PubMed  Google Scholar 

  • Fuge H (1977) Ultrastructure of the mitotic spindle. Int Rev Cytol [Suppl] 6:1–52

    Google Scholar 

  • Furcht LT, Scott RE (1975) Effect of vinblastine sulfate, colchicine and lumicolchicine on membrane organization of normal and transformed cells. Exp Cell Res 96:271–282

    PubMed  Google Scholar 

  • Gilkey JC, Jaffe LF, Ridgway EB, Reynolds GT (1978) A free calcium wave traverses the activating egg of the medaka,Oryzias latipes. J Cell Biol 76:448–466

    PubMed  Google Scholar 

  • Harris P (1975) The role of membranes in the organization of the mitotic apparatus. Exp Cell Res 94:409–425

    PubMed  Google Scholar 

  • Harris P (1978) Triggers, trigger waves, and mitosis: a new model. In: Jeter JR, Cameron IL, Padilla GM, Zimmerman AM (eds) Cell cycle regulation. Academic Press, New York, pp 75–104

    Google Scholar 

  • Inoué S, Ritter H (1975) Dynamics of mitotic spindle organizations and function. In: Inoúé S, Stephens RE (eds) Molecules and cell movement. Raven Press, New York pp 3–30

    Google Scholar 

  • Izant JG (1983) The role of calcium ions during mitosis: Calcium participates in the anaphase trigger. Chromosoma [Berl] 88:1–10

    Google Scholar 

  • Kaiser J (1984) Colchicin-inhibierte Dotteroszillation in einem Dipterenei. Verh Dtsch Zool Ges, Gießen

    Google Scholar 

  • Keith CH, Bajer AS, Maxfield FR, Shelanski ML: (1984) Ca2+ localization in mitotic cells. J Cell Biol 99:428a

    Google Scholar 

  • Kiehart DP (1981) Studies on the in vivo sensitivity of spindle microtubules to calcium ions and evidence for a vesicular calcium-sequenstering system. J Cell Biol 88:604–617

    PubMed  Google Scholar 

  • Krause G (1939) Die Eitypen der Insekten. Biol Zbl 59:495–536

    Google Scholar 

  • Krause G (1981) Homology studies on insect egg systems. In: Sauer HW (ed) Progress in developmental biology. G Fischer, Stuttgart, New York, pp 307–333

    Google Scholar 

  • Krause G, Krause J (1972) Die Entwicklung prospektiver Diapausekeime (Bombyx mori L.) in vitro ohne Dormanz. II. Fremdeiweißmedien (LYS) mit extraembryonalem Depotmaterial aus verschiedenen Phasen der Eidiapause. Wilhelm Roux' Arch 171:121–159

    Google Scholar 

  • Krause G, Sander K (1962) Ooplasmic reaction systems in insect embryogenesis. Adv Morphogen 2:259–303

    Google Scholar 

  • Margolis RL (1983) Calcium and microtubules. In: Calcium and cell function Vol IV (WY Cheung, ed). Academic Press, New York, pp 313–335

    Google Scholar 

  • Means AR, Dedman JR (1980) Calmodulin — an intracellular calcium receptor. Nature 285:73–77

    PubMed  Google Scholar 

  • Mitchison JM (1977) The timing of cell cycle events. In: Little M, Paweletz N, Petzelt C, Ponstingl H, Schroeter D, Zimmermann H-P (eds) Mitosis, facts and questions. Springer, Berlin Heidelberg New York, pp 1–13

    Google Scholar 

  • Miyamoto DM, van der Meer JM (1982) Early egg contractions and patterned parasynchronous cleavage in a living insect egg. Wilhelm Roux's Arch 191:95–102

    Google Scholar 

  • Newport JW, Kirschner MW (1984) Regulation of cell cycle during earlyXenopus development. Cell 37:731–742

    PubMed  Google Scholar 

  • Prescott DM (1976) The cell cycle and the control of cellular reproduction. Adv Genet 18:99–177

    PubMed  Google Scholar 

  • Raff EC (1979) The control of microtubule assembly in vivo. Int Rev Cytol 59:1–96

    PubMed  Google Scholar 

  • Rebhun LI (1977) Cyclic nucleotides, calcium, and cell division. Int Rev Cytol 37:1–54

    Google Scholar 

  • Ridgway EB, Gilkey JC, Jaffe LF (1977) Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci [USA] 74:623–627

    Google Scholar 

  • Sakai H (1978) The isolated mitotic apparatus and chromosome motion. Int Rev Cytol 55:23–48

    Google Scholar 

  • Salmon ED (1982) Calcium, spindle microtubule dynamics and chromosome movement. Cell Differ 11:353–355

    Google Scholar 

  • Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–239

    Google Scholar 

  • Sander K (1984) Embryonic pattern formation in insects: Basic concepts and their experimental foundations. In: Malacinski GM, Bryant SV (eds) Pattern formation: a primer of developmental biology. Macmillan, New York

    Google Scholar 

  • Sanger JW (1977) Nontubulin molecules in the spindle. In: Little M, Paweletz N, Petzelt C, Ponstingl H, Schroeter D, Zimmermann H-P (eds) Mitosis, facts and questions. Springer, Berlin Heidelberg New York, pp 98–113

    Google Scholar 

  • Shinagawa A (1983) The interval of the cytoplasmic cycle observed in non-nucleate egg fragments is longer than that of the cleavage cycle in normal eggs ofXenopus laevis. J Cell Sci 64:147–162

    PubMed  Google Scholar 

  • Taylor DL, Fechheimer M (1982) Calcium regulation in amoeboid movement. In: Kakiuchi S, Hidaka H, Means AR (eds) Calmodulin and intracellular Ca2+ receptors. Plenum Publ Corp, London

    Google Scholar 

  • van der Meer JM, Kemner W, Miyamoto DM (1982) Mitotic waves and embryonic pattern formation: No correlation inCallosobruchus (Coleoptera). Wilhelm Roux's Arch 191:355–365

    Google Scholar 

  • Welsh MJ, Dedman JR, Brinkley BR, Means AR (1979) Tubulin and Calmodulin: Effects of microtubule and microfilament inhibitors on localization in the mitotic apparatus. J Cell Biol 81:624–634

    PubMed  Google Scholar 

  • Went DF, Krause G (1973) Normal development of mechanically activated, unlaid eggs of an endoparasitic Hymenopteran. Nature [Lond] 244:454–455

    Google Scholar 

  • Wolf R (1969) Kinematik and Feinstruktur plasmatischer Faktorenbereiche des Eies vonWachtliella persicariae L. (Diptera). I. Das Verhalten ooplasmatischer Teilsysteme im normalen Ei. Wilhelm Roux's Arch 162:121–160

    Google Scholar 

  • Wolf R (1973) Kausalmechanismen der Kernbewegung und-teilung während der frühen Furchung im Ei der GallmückeWachtliella persicariae L. I. Kinematische Darstellung des “Migrationsasters” wandernder Energiden und Steuerung seiner Aktivität durch den Initialbereich der Furchung. Wilhelm Roux' Arch 172:28–57

    Google Scholar 

  • Wolf R (1976) Indirekte Streifen-Mikrokymographie zur Analyse und Dokumentation kinematographisch registrierter Bewegungsprozesse. Inst Wiss Film Göttingen, Res Film 9/2:122–124

    Google Scholar 

  • Wolf R (1977) Embryonalentwicklung der GallmückeWachtliella persicariae (Diptera). Tonfilm D 1235, Inst Wiss Film Göttingen, Publ wiss Film Sekt Biol 10/34:1–24

    Google Scholar 

  • Wolf R (1978) The cytaster, a colchicine-sensitive migration organelle of cleavage nuclei in an insect egg. Dev Biol 62:464–472

    PubMed  Google Scholar 

  • Wolf R (1980) Migration and division of cleavage nuclei in the gall midge,Wachtliella persicariae. II. Origin and ultrastructure of the migration cytaster. Wilhelm Roux's Arch 188:65–73

    Google Scholar 

  • Wolf R, Nuss E (1976) Artificial displacements within the insect ooplasm caused by fixation, and their microkymographic registration. Wilhelm Roux's Arch 179:197–202

    Google Scholar 

  • Wolf R, Wolf D (1974) Aufbau und Aufrechterhaltung steiler Temperaturgradienten in entwicklungsbiologischen Obiekten bei gleichzeitiger lichtmikroskopischer Filmregistrierung. Wilhelm Roux' Arch 175:249–252

    Google Scholar 

  • Wolniak SM, Hepler PK, Jackson WT (1981) Ionic changes in the mitotic apparatus during the metaphase/anaphase transition. J Cell Biol 91:313a

    Google Scholar 

  • Zalokar M (1982) Injection of enzyme-coated microspheres intoDrosophila eggs. In: Lakovaara S (ed) Advances in genetics, development and evolution ofDrosophila. Plenum Press New York/London

    Google Scholar 

  • Zimmerman A, Forer A (1981) Mitosis and cytokinesis. Academic Press, London, New York

    Google Scholar 

  • Zissler D, Sander K (1973) The cytoplasmic architecture of the egg cell ofSmittia spec. (Diptera, Chironomidae). I. Anterior and posterior pole regions. Wilhelm Roux' Arch 172:175–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, R. Migration and division of cleavage nuclei in the gall midge,Wachtliella persicariae . Wilhelm Roux' Archiv 194, 257–270 (1985). https://doi.org/10.1007/BF01152171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01152171

Key words

Navigation