Skip to main content
Log in

Yolk organelles and their membranes during vitellogenesis ofXenopus oocytes

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The yolk platelets ofXenopus laevis have been studied by thin-section and freeze-fracture electron microscopy to characterize the boundary membrane during yolk formation. Throughout vitellogenesis, large yolk platelets are in close contact with smaller nascent yolk organelles. Two types of primordial yolk platelets (I and II) have been discriminated. After membrane fusion these precursors can be completely incorporated into the main body of existing platelets, numerous yolk crystals then merge and form one uniformly stratified core. Lipid droplets are tightly attached to the membrane at all developmental stages of yolk platelets. A direct connection of endoplasmic reticulum to the membranes of yolk platelets was not observed. On freezeetching replicas, yolk-platelet membranes present fracture faces with intramembranous particles (IMP) of various sizes and a heterogeneous distribution of approximately 200–600 IMP/μm2 at the E face, and 1200–2100 IMP/μm2 at the P face. Again, this presentation of the membrane exhibits neither anastomoses to the endoplasmic reticulum, nor caveolae that exclude the uptake of yolk-containing vesicles into these yolk organelles. Proteinaceous yolk platelets tend to fracture along their periphery through the superficial layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benavente R, Krohne G, Franke WW (1985) Cell type-specific expression of nuclear lamina proteins during development ofXenopus laevis. Cell 41: 177–190

    Article  PubMed  CAS  Google Scholar 

  • Bluemink JG, Hage WJ, van der Hoef MH, Dictus WJAG (1983) Freeze-fracture electron microscopy of membrane changes in progesterone-induced maturing oocytes and eggs ofXenopus laevis. Eur J Cell Biol 31: 85–93

    PubMed  CAS  Google Scholar 

  • Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Mühlethaler K, Northcote DH, Packer L, Satir B, Satir P, Speth V, Staehelin LA, Steere R, Weinstein R (1975) Freeze etching nomenclature. Science 190: 54–56

    PubMed  CAS  Google Scholar 

  • Dumont JN (1972) Oogenesis inXenopus laevis (Daudin) I. Stages of oocyte development in laboratory maintained animals. J Morphol 136: 153–180

    Article  PubMed  CAS  Google Scholar 

  • Favard P, Favard-Séréno C (1969) Electron microscope study of polysaccharides in the amphibian oocytes. J Submicrosc Cytol 1: 91–111

    Google Scholar 

  • Ibrahim KB (1980) Estimation of sodium and potassium in yolk platelets of totad (Bufo bufo) oocytes by electron micro-probeX-Ray analysis. J Physiol (Lond) 305: 91–92

    Google Scholar 

  • Imoh H (1982) Behaviour of annulate lamellae during the maturation of oocytes in the newt,Cynops pyrrhogaster. J Embryol Exp Morphol 70: 153–169

    PubMed  CAS  Google Scholar 

  • Karasaki S (1963) Studies on amphibian yolk. 5. Electron microscopic observations on the utilization of yolk platelets during embryogenesis. J Ultrastruct Res 9: 225–247

    Article  Google Scholar 

  • Kessel RG, Ganion LR (1980a) Electron microscopic and autoradiographic studies on vitellogenesis inNecturus maculosus. J Morphol 164: 215–233

    Article  PubMed  CAS  Google Scholar 

  • Kessel RG, Ganion LR (1980b) Cytodifferentiation in theRana pipiens oocyte. VI. The origin and morphogenesis of primary yolk precursor complexes. J Submicrosc Cytol 12: 647–654

    Google Scholar 

  • Kress A (1982) Ultrastructural indications for autosynthetic proteinaceous yolk formation in amphibian oocytes. Experientia 38: 761–771

    Article  PubMed  CAS  Google Scholar 

  • Lange RH, Richter H-P, Riehl R, Zierold K, Trandaburu T, Magdowski G (1983) Lipovitellin-phosvitin crystals with orthorhombic features: thin-section electron microscopy, gel electrophoresis, and microanalysis in teleost and amphibian yolk platelets and in comparison with other vertebrates. J Ultrastruct Res 83: 122–140

    Article  PubMed  CAS  Google Scholar 

  • Ling GN (1984) Counterarguments against alleged proof of the Na−K pump in studies of K+ and Na+ distributions in amphibian eggs. Physiol Chem 16: 293–305

    CAS  Google Scholar 

  • Mes-Hartree M, Armstrong JB (1976) Lipid composition of developingXenopus laevis embryos. Can J Biochem 54: 578–582

    PubMed  CAS  Google Scholar 

  • Richter H-P (1987) Membranes during yolk-platelet development in oocytes of the toadBufo marinus Roux's Arch Dev Biol 196: 367–371

    Article  Google Scholar 

  • Richter H-P, Jung D, Passow H (1984) Regulatory changes of membrane transport and ouabain binding during progesterone-induced maturation ofXenopus oocytes. J Membr Biol 79: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Robertson N (1979) Carbohydrate content of isolated yolk platelets from early developmental stages ofXenopus laevis. Cell Differ 8: 173–185

    Article  PubMed  CAS  Google Scholar 

  • Wall DA, Meleka I (1985) An unusual lysosome compartment involved in vitellogenin endocytosis byXenopus oocytes. J Cell Biol 101: 1651–1664

    Article  PubMed  CAS  Google Scholar 

  • Wall DA, Patel S (1987) Multivesicular bodies play a key role in vitellogenin endocytosis byXenopus oocytes. Dev Biol 119: 275–289

    Article  PubMed  CAS  Google Scholar 

  • Wallace RA (1963) Studies on amphibian yolk. IV. An analysis of the main-body components of yolk platelets. Biochim Biophys Acta 74: 505–518

    Article  PubMed  CAS  Google Scholar 

  • Wallace RA (1970) Studies on amphibian yolk. IX.Xenopus vitellogenin. Biochim Biophys Acta 215: 176–183

    PubMed  CAS  Google Scholar 

  • Ward RT (1978a) The origin of protein and fatty yolk inRana pipiens. III. Intra-mitochondrial and primary vesicular yolk formation in frog oocytes. Tissue Cell 10: 515–524

    PubMed  CAS  Google Scholar 

  • Ward RT (1978b) The origin of protein and fatty yolk inRana pipiens. IV. Secondary vesicular yolk formation in frog oocytes. Tissue Cell 10: 525–534

    PubMed  CAS  Google Scholar 

  • Wiley HS, Wallace RA (1981) The structure of vitellogenin. Multiple vitellogenins inXenopus laevis give rise to multiple forms of the yolk proteins. J Biol Chem 256: 8626–8634

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, H.P. Yolk organelles and their membranes during vitellogenesis ofXenopus oocytes. Roux's Arch Dev Biol 198, 92–102 (1989). https://doi.org/10.1007/BF02447744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02447744

Key words

Navigation