Skip to main content
Log in

The ultrastructural effects of global ischaemia on Purkinje fibres compared with working myocardium: A qualitative and morphometric investigation on the canine heart

  • Published:
Virchows Archiv A Aims and scope Submit manuscript

Summary

During open heart surgery, reperfusion-induced arrhythmias arising after short periods of ischaemia may originate from subendocardial Purkinje fibres. We investigated the ultrastructure of these fibres during 30 min of global ischaemia at 25° C. The effects both with myocardial protection (HTK cardioplegia) and without it (pure ischaemia) were compared qualitatively and morphometrically. After 30 min pure ischaemia overcontraction of sarcomeres, hypercontraction and contraction bands, together with considerable changes in organelles, predominate over cellular oedema. In Purkinje fibres, both cellular and mitochondrial swelling were significantly increased within this 30-min time period from the onset of pure ischaemia. In contrast, following HTK cardioplegia and 30 min ischaemia, cellular and mitochondrial swelling remain moderate and over-contractions are almost entirely lacking. This means that despite remarkable differences between pure ischaemia and HTK cardioplegia in the degree of protection attained it is clear that, compared with the working myocardium, subendocardial Purkinje fibres do not display a higher resistance to early global ischaemia. Further investigations of this sensitivity of Purkinje fibres to global ischaemia and certain drugs may bring about new insights into myocardial protection and pharmacotherapy of arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamantidis MM, Caron JF, Dupuis BA (1986) Triggered activity induced by combined mild hypoxia and acidosis in guinea-pig Purkinje-fibers. J Mol Cell Cardiol 18:1287–1299

    Google Scholar 

  • Anderson PG, Bishop SP, Digerness SB (1987) Transmural progression of morphologic changes during ischemic contracture and reperfusion in the normal and hypertrophied rat heart. Am J Pathol 129:152–167

    Google Scholar 

  • Andersson BG, Aw TY, Jones DP (1987) Mitochondrial transmembrane potential and pH gradient during anoxia. Am J Physiol 252:C349-C355

    Google Scholar 

  • Armiger LC, Knell CM (1988) Fine structural alteration in the atrioventricular junctional conduction tissues of the dog heart during severe ischemia. J Submicrosc Cytol Pathol 20:645–656

    Google Scholar 

  • Bretschneider HJ (1961) Sauerstoffbedarf- und Versorgung des Herzmuskels. Verh Dtsch Ges Kreislaufforsch 27:32–59

    Google Scholar 

  • Bretschneider HJ (1980) Myocardial protection. Thorac Cardiovasc Surgeon 28:295–302

    Google Scholar 

  • Bretschneider HJ, Helmchen U, Kehrer G (1988) Nierenprotektion. Klein Wochenschr 66:817–827

    Google Scholar 

  • Canale E, Campbell GR, Uehara Y, Fujiwara T, Smolich JJ (1983) Sheep cardiac Purkinje fibers: configurational changes during the cardiac cycle. Cell Tissue Res 232:97–110

    Google Scholar 

  • Doerr W (1957) Die Morphologie des Reizleitungssystems, ihre Orthologie und Pathologie. In: Spang K (ed) Rhythmusstörungen des Herzens. Thieme, Stuttgart, pp 1–46

    Google Scholar 

  • Eisenberg BR, Cohen IS (1983) The ultrastructure of the cardiac Purkinje strand in the dog: a morphometric analysis. Proc R Soc Lond B 217:191–213

    Google Scholar 

  • Elias EA, Elias RA, De Vries GP, Meijer AEFH (1982) Early and late changes in the metabolic pattern of the working myocardial fibres and Purkinje fibres of the human heart under ischaemic and inflammatory conditions: an enzyme histochemical study. Histochem J 14:445–459

    Google Scholar 

  • Friedman PL, Fenoglio JJ, Wit AL (1975) Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res 36:127–144

    Google Scholar 

  • Ganote CE (1983) Contraction band necrosis and irreversible myocardial injury. J Mol Cell Cardiol 15:67–73

    Google Scholar 

  • Gebhard MM, Bretschneider HJ (1989) Myocardial protection. Curr Opinions Cardiol 4:803–806

    Google Scholar 

  • Gebhard MM, Schnabel PA (1989) Limitierende Faktoren der Ischämietoleranz des Herzens. In: Grote J, Witzleb E (Hrsg) Durchblutungsregulation und Atemgaswechsel. Fischer, Stuttgart, pp 125–133

    Google Scholar 

  • Gough WB, El-Sherif N (1989) The differential response to normal and ischaemic Purkinje fibres to clofilium, d-sotalol and bretylium. Cardiovasc Res 23:554–559

    Google Scholar 

  • Hearse DJ (1988) The protection of the ischemic myocardium: surgical success v clinical failure. Prog Cardiovasc Dis 30:381–402

    Google Scholar 

  • Henry CG, Lowry OH (1985) Enzymes and metabolites of glycogen metabolism in canine cardiac Purkinje fibers. Am J Physiol 245:H559-H605

    Google Scholar 

  • Karch SB, Billingham ME (1985) Myocardial contraction bands revisited. Hum Pathol 17:9–13

    Google Scholar 

  • Kawamura K (1961) Electron microscope studies on the cardiac conduction system of the dog. I. The Purkinje fibres. Jpn Circ J 25:594–616

    Google Scholar 

  • Kehrer G, Blech M, Kalierhoff M, Langheinrich M, Bretschneider HJ (1989) Contribution of amino acids in protective solutions to postischemic functional recovery of canine kidneys. Res Exp Med 189:381–396

    Google Scholar 

  • Kübler W, Schömig A, Senges J (1985) The conduction system and cardiac sympathetic system: metabolic aspects. J Am Cell Cardiol 5:157B-161B

    Google Scholar 

  • Lurie KB, Argentieri TM, Sheldon J, Frame LH, Matschinsky FM (1987) Metabolism and electrophysiology in subendocardial Purkinje fibers after infarction. Am J Physiol 253: H662-H670

    Google Scholar 

  • Mall G, Raumbausek M, Neumeister A, Kollmar S, Vetterlein F, Ritz E (1988) Myocardial interstitial fibrosis in experimental uremia. Implications for cardiac compliance. Kidney Int 33:804–811

    Google Scholar 

  • Martinez-Palomo A, Alanis J, Benitez D (1970) Transitional cardiac cells of the conductive system of the dog heart. J Cell Biol 47:1–17

    Google Scholar 

  • Michelson EL, Morganroth J, MacVaugh H (1979) Postoperative arrhythmias after coronary artery and cardiac valvular surgery detected by longterm electrocardiographic monitoring. Am Heart J 97:442–448

    Google Scholar 

  • Mobley BA, Page E (1972) The surface area of sheep cardiac Purkinje fibres. J Physiol 220:547–563

    Google Scholar 

  • Muir AR (1957) Observations on the fine structure of the Purkinje fibers in the ventricles of the sheep's heart. J Anat 91:251–263

    Google Scholar 

  • Neely JR, Grotyohann LW (1984) Role of glycolytic products in damage to ischemic myocardium. Circ Res 55:816–824

    Google Scholar 

  • Pape C, Kübler W, Smekal P von (1969) Morphometrie am Reizleitungssystem und Arbeitsmyocard des Kalbsherzens. Beitr Pathol Anat 140:23–37

    Google Scholar 

  • Pattison CW, Dimitri WR, Williams DT (1988) Dysrhythmias following coronary artery surgery. A comparison between cold cardioplegic and intermittent ischaemic arrest (32° C) with the effect of right coronary endarterectomy. J Cardiovasc Surg 29:601–605

    Google Scholar 

  • Pick EP (1924) Über das primum und ultimum moriens im Herzen. Klin Wochenschr 3:662–667

    Google Scholar 

  • Pine MB, Caulfield JB, Bing OHL, Brooks WW, Abelmann WH (1979) Resistance of contracting myocardium to swelling with hypoxia and glycolytic blockade. Cardiovasc Res 13:215–224

    Google Scholar 

  • Pomykaj T, Schnabel PA, Eins S, Gebhard MM, Richter J, Bretschneider HJ (1986) Ultrastruktur des Kapillarendothels während globaler Ischämie des Herzens. Verh Anat Ges 80:571–573

    Google Scholar 

  • Ramsauer B, Schnabel PA, Schmiedl A, Bartels U, Gebhard MM, Richter J, Bretschneider HJ (1989) Schädigungsmuster von Purkinje-Fasern und Arbeitsmyokard nach Kardioplegie und Ischämie. Verh Dtsch Ges Pathol 73:511

    Google Scholar 

  • Reiser J, Anderson GJ (1981) Preferential sensitivity of the left canine Purkinje system to cardiac glycosides. Circ Res 49:1043–1054

    Google Scholar 

  • Richter J, Schnabel PhA, Bretschneider HJ, Gebhard MM, Preusse CJ, Pomykaj T, Ulbricht LJ (1984) Ultrastrukturelle Veränderungen der kapillären Endstrombahn von wiederbelebten Herzen nach globaler Ischämie. Verh Anat Ges 78:383–386

    Google Scholar 

  • Richter J, Schnabel PA, Pflug M, Gebhard MM, Bretschneider HJ (1986) Elektronenmikroskopische Untersuchungen an Purkinje-Fasern bei globaler Ischämie unter Myokardprotektion. Verh Anat Ges 80:567–570

    Google Scholar 

  • Schiebler TH (1953) Herzstudie. I. Histochemische Untersuchung der Purkinje-Fasern von Säugern. Z Zellforsch 39:152–167

    Google Scholar 

  • Schmiedl A, Schnabel PA, Mall G, Gebhard MM, Hunneman DH, Richter J, Bretschneider HJ (1990a) The surface to volume ratio of mitochondria, a suitable parameter for evaluating mitochondrial swelling. Correlations during the course of myocardial global ischaemia. Virchows Arch [A] 416:305–315

    Google Scholar 

  • Schmiedl A, Schnabel PA, Haasis G, Mall G, Gebhard MM, Richter J, Bretschneider HJ (1990b) Influence of pretreatment on interstitial and intracellular space of canine left ventricular myocardium. Acta Anat 138:175–181

    Google Scholar 

  • Schnabel PA, Gebhard MM, Pomykaj T, Schmiedl A, Preusse CJ, Richter J, Bretschneider HJ (1987a) Myocardial protection: left ventricular ultrastructure after different forms of cardiac arrest. Thorac Cardiovasc Surgeon 35:148–156

    Google Scholar 

  • Schnabel PA, Schmiedl A, Gebhard MM, Pomykaj T, Richter J, Bretschneider HJ (1987b) Optimierung der Perfusionsfixierung des Herzens durch Kardioplegie. Verh Anat Ges 81:141–142

    Google Scholar 

  • Schnabel PA, Gebhard MM, Richter J, Schmiedl A, Bretschneider HJ (1988 a) Feinstruktur subendokardialer Purkinje-Fasern während und nach Ischämie: Einfluß unterschiedlicher kardioplegischer Lösungen. Z Herz-Thorax-Gefäßchir 2:54–61

    Google Scholar 

  • Schnabel PA, Clavien H-J, Kehrer G, Ramsauer B, Schmiedl A, Gebhard MM, Richter J, Bretschneider HJ (1988 b) Strukturelle Ischämietoleranz subendokardialer Purkinje-Fasern im Vergleich zum Arbeitsmyokard. Verh Dtsch Ges Pathol 72:581

    Google Scholar 

  • Schnabel PA, Richter J, Gebhard MM, Mall G, Schmiedl A, Clavien H-J, Bretschneider HJ (1990a) Ultrastructural effects induced by global ischaemia on the AV node compared with the working myocardium: a qualitative and morphometric investigation on the canine heart. Virchows Arch [A] 416:317–328

    Google Scholar 

  • Schnabel PA, Schmiedl A, Ramsauer B, Bartels U, Gebhard MM, Richter J, Bretschneider HJ (1990b) Occurrence and prevention of contraction bands in Purkinje fibres, transitional cells and working myocardium during global ischaemia. Virchows Arch [A] 417:463–471

    Google Scholar 

  • Singal PK, Beamish RE, Dhalla NS (1983) Potential oxidative pathways of catecholamines in the formation of lipid peroxides and genesis of heart disease. Adv Exp Med Biol 161:391–401

    Google Scholar 

  • Singer D, Bretschneider HJ (1990) Metabolic reduction in hypothermia: pathophysiological problems and natural examples. Parts 1 and 2. Thorac Cardiovasc Surgeon 38:205–219

    Google Scholar 

  • Sommer JR, Dolber PC (1982) Cardiac muscle: ultrastructure of its cells and bundles. In: Paes de Carvalho A, Hoffmann BF, Liebermann M (eds) Normal and abnormal conduction in the heart. Futura, New York, pp 1–28

    Google Scholar 

  • Stier A, Finch SAE, Schäfer H, Gebhard MM, Bretschneider HJ (1989)31P-NMR spectroscopy of phosphate compartmentation during ischaemia in hearts protected by cardioplegic treatment. Free Radic Res Commun 7:293–300

    Google Scholar 

  • Thornell L-E, Sjöstrom M, Andersson K-E (1976) The relationship between mechanical stress and myofibrillar organization in heart Purkinje fibres. J Mol Cell Cardiol 8:689–695

    Google Scholar 

  • Tribulova N, Slezak J, Gabauer I, Styk J, Holec V (1988) Is the conductive system of the heart resistant to ischemia? Bratisl Lek Listy 89:647–654

    Google Scholar 

  • Truex RC, Smythe MQ (1965) Comparative morphology of the cardiac conduction tissue in animals. Ann NY Acad Sci 127:19–33

    Google Scholar 

  • Vander Heide RS, Angelo JP, Altschuld RA, Ganote CE (1986) Energy dependence of contraction band formation in perfused hearts and isolated adult myocytes. Am J Pathol 125:55–68

    Google Scholar 

  • Vanderwee MA, Humphrey SM, Gavin JB, Armiger LC (1981) Changes in the contractile state, fine structure and metabolism of cardiac muscle cells during the development of rigor mortis. Virchows Arch [B] 35:159–167

    Google Scholar 

  • Viragh S, Stoeckel ME, Porte A (1987) Light and electron microscopic structure of the cardiac Purkinje fibers — review. Physiol Bohemoslav 36:233–242

    Google Scholar 

  • Weibel ER (1979) Stereological methods, vol 1. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnabel, P.A., Richter, J., Schmiedl, A. et al. The ultrastructural effects of global ischaemia on Purkinje fibres compared with working myocardium: A qualitative and morphometric investigation on the canine heart. Vichows Archiv A Pathol Anat 418, 17–25 (1991). https://doi.org/10.1007/BF01600240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01600240

Key words

Navigation