Skip to main content
Log in

A metabolic disorder similar to Zellweger syndrome with hepatic acatalasia and absence of peroxisomes, altered content and redox state of cytochromes, and infantile cirrhosis with hemosiderosis

  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

A patient with a cerebro-hepato-renal syndrome was investigated. The visceral manifestations were those of the Zellweger syndrome (ZS); however, the child exhibited muscular hypertonia and survived into the 2nd year of life. Ultramicroscopically, hepatocytes were lacking peroxisomes, but, contrary to findings in one patient with ZS [2], contained smooth endoplasmic reticulum. No catalase was found by histochemistry or spectroscopy. Mitochondria showed normal succinate and glutamate respiration, and normal coupling of respiration to the phosphorylation potential. The cytochrome (cyt) content was diminished to one-third with an abnormally inversed redox patterns of the respiratory chain in the controlled state, cyt b being 5%, cyt c 23% reduced. The oxygen affinity of cyt a 3 was normal. These findings exclude a defect in the nonheme iron protein region of the respiratory chain as described in ZS [2], but point to a functional abnormality of cyt b in our patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Versmold, H. T., Brauser, B., Herzog, V., et al.: Deficiency of catalase and cytochrome b: A genetic defect of oxygen metabolism? Pediat. Res. (Abstract) 9, 861 (1975)

    Google Scholar 

  2. Goldfischer, S., Moore, C. L., Johnson, A. B., et al.: Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182, 62–64 (1973)

    Google Scholar 

  3. Bowen, P., Lee, C. S. N., Zellweger, H., et al.: A familial syndrome of multiple congenital defects. Bull. Johns Hopkins Hosp. 114, 402–414 (1964)

    Google Scholar 

  4. Smith, D. W., Opitz, J. M., Inhorn, S. L.: A syndrome of multiple developmental defects including polycystic kidneys and intrahepatic biliary dysgenesis in two siblings. J. Pediat. 67, 617–624 (1964)

    Google Scholar 

  5. Passarge, E., McAdams, A. J.: Cerebro-hepato-renal syndrome. J. Pediat. 71, 691–702 (1967)

    Google Scholar 

  6. Opitz, J. M., Zu Rhein, G. M., Vitale, L., et al.: The Zellweger syndrome (cerebro-hepato-renal syndrome). Birth Defects, Original Article Series, Vol V/2, 144–158 (1969)

    Google Scholar 

  7. Vitale, L., Opitz, J. M., Shahidi, N. T.: Congenital and familial iron overload. N. Engl. J. Med. 280, 642–645 (1969)

    Google Scholar 

  8. Danks, D. M., Tippett, P., Adams, C., et al.: Cerebro-hepato-renal syndrome of Zellweger. J. Pediat. 86 382–387 (1975)

    Google Scholar 

  9. Gilchrist, K. W., Gilbert, E. F., Goldfarb, S., et al.: Studies of malformation syndromes of man. XIB: the cerebro-hepato-renal syndrome of Zellweger: comparative pathology Europ. J. Pediat. 121, 99–118 (1976)

    Google Scholar 

  10. Schmid, F.: Pädiatrische Radiologie. Vol. 1, pp. 248–256. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  11. Hwang, Y. F., Brown, E. B.: Evaluation of deferoxamine in iron overload. Arch. intern. Med. 114, 741–753 (1964)

    Google Scholar 

  12. Siegel, G., Roedel, H., Nolte, J., et al.: Ionic composition and ionic exchange in vascular smooth muscle. In: E. Bülbring, M. F. Shuba (eds), Physiology of Smooth Muscles. pp. 19–39. New York-London: Raven Press 1975

    Google Scholar 

  13. Schneider, W. C., Hogeboom, G. H.: Intracellular distribution of enzymes. V. Further studies on the distribution of cytochrome c in rat liver homogenates. J. Biol. Chem. 183, 123–128 (1958)

    Google Scholar 

  14. Brauser, B.: Ein Gerät zur höchstempfindlichen Differentialspektrophotometrie mit dem Rapidspektroskop. Z. anal. Chem. 237, 8–17 (1968)

    Google Scholar 

  15. Brauser, B., Bücher, Th., Sies, H., et al.: Control of mitochondrial activity by metabolites in the hemoglobin free perfused liver. In: K. Gaede, B. S. Horrecker, W. J. Whelan (eds.), Molecular Basis of Biological Activity. pp. 197–219. New York: Academic Press 1972

    Google Scholar 

  16. Lübbers, D. W., Niesel, W.: Der Kurzzeit-Spektralanalysator. Ein schnell arbeitendes Spektralphotometer zur laufenden Messung von Absorptions-bzw. Extinktionspektren. Pflügers Arch. ges. Physiol. 268, 286–295 (1959)

    Google Scholar 

  17. Gelder, B. F. van, Slater, E. C.: Titration of cytochrome c oxidase with NADH and phenazine methosulphate. Biochim. Biophys. Acta 73, 663–665 (1963)

    Google Scholar 

  18. Zaugg, W. S., Rieske, J. S.: The quantitative estimation of cytochrome b in submitochondrial particles from beef heart. Biochem. Biophys. Res. Comm. 9, 213–217 (1962)

    Google Scholar 

  19. Margoliash, E., Frohwirt, N.: Spectrum of horse-heart cytochrome c. Biochem. J. 71, 570–572 (1959)

    Google Scholar 

  20. Omura, T., Sato, R.: The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239, 2370–2379 (1964)

    Google Scholar 

  21. Omura, T., Sato, R.: The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J. Biol. Chem. 239, 2379–2385 (1964)

    Google Scholar 

  22. Beisenherz, G., Boltze, H. J., Bücher, Th., et al.: Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchnmuskulatur in einem Arbeitsgang. Z. Naturforsch. 8b, 555–577 (1953)

    Google Scholar 

  23. Sies, H., Bücher, Th., Oshino, N., et al.: Heme occupancy of catalase in hemoglobin-free perfused rat liver catalase. Arch. Biochem. Biophys. 154, 106–116 (1973)

    Google Scholar 

  24. Smith, R. E., Farquhar, M. G.: Preparation of nonfrozen sections for electron microscope cytochemistry. Sci. Instr. News. (RCA) 10, 13–18 (1965)

    Google Scholar 

  25. Novikoff, A. B., Novikoff, P. M., Quintana, N., et al.: Studies on microperoxisomes. III. Observations on human and rat hepatocytes. J. Histochem. Cytochem. 21, 540–558 (1973)

    Google Scholar 

  26. Herzog, V., Fahimi, H. D.: An improved method for demonstration of the peroxidatic activity of beef liver catalase. J. Histochem. Cytochem. 21, 412 (1973)

    Google Scholar 

  27. Reynolds, E. S.: The use of lead-citrate at high pH as an electron opaque stain in electron microscopy. J. Cell. Biol. 17, 208–212 (1963)

    Google Scholar 

  28. Volpe, J. J., Adams, R. D.: Cerebro-hepato-renal syndrome of Zellweger: An inherited disorder of neuronal migration. Acta neuropath. (Berl.) 20, 175–198 (1972)

    Google Scholar 

  29. Brückmann, G., Zondek, S. G.: Iron, copper and manganese in human organs at various ages. Biochem. J. 33, 1845–1857 (1939)

    Google Scholar 

  30. Tompsett, S. L.: The copper and “inorganic” iron contents of human tissues. Biochem. J. 29, 480–486 (1935)

    Google Scholar 

  31. Tingey, A. H.: The iron, copper and manganese content of the human brain. J. Mental. Sci. 83, 52–460 (1937)

    Google Scholar 

  32. Smith, R. E., Rosello, S., Say, M. B., et al.: Iron storage in the first five years of life. Pediatrics 16, 166–173 (1955)

    Google Scholar 

  33. Cumings, J. N.: The copper and iron content of brain and liver in the normal and in hepato-lenticular degeneration. Brain 71, 410–415 (1948)

    Google Scholar 

  34. Seligman, A. M., Karnovsky, M. J., Wasserkrug, H. L., et al.: Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J. Cell Biol. 38, 1–14 (1968)

    Google Scholar 

  35. Schindler, F. J.: Dissertation, University of Pennsylvania (1964) cited by Chance, B.: Reaction of oxygen with respiratory chain in cells and tissues. J. Gen. Physiol. 49, 163–188 (1965)

    Google Scholar 

  36. Alvares, A., Schilling, G., Levin, W., et al.: Cytochrome P-450 and b5 in human liver microsomes. Clin. Pharmacol. Ther. 10, 655–659 (1969)

    Google Scholar 

  37. Schöne, B., Fleischmann, R. A., Remmer, H., et al.: Determination of drug metabolizing enzymes in needle biopsies of human liver. Eur. J. Clin. Pharmacol. 4, 65–73 (1972)

    Google Scholar 

  38. Goldfischer, S., Essner, E.: Peroxidase actkvity in peroxisomes (microbodies) of acatalasemic mice. J. Histochem. Cytochem. 18, 482–489 (1970)

    Google Scholar 

  39. Novikoff, A. B., Shin, W. Y.: The endoplasmic reticulum in the Golgi zone and its relation to microbodies, Golgi apparatus and autophagic vacuoles in rat liver cells. J. Microscopy 3, 187–206 (1964)

    Google Scholar 

  40. Ghadially, F. N., Parry, E. W.: Ultrastructure of human hepatocellular carcinoma and surrounding non-neoplastic liver. Cancer (Philad.) 19, 1989–2004 (1966)

    Google Scholar 

  41. Flaks, B.: Formation of membrane-glycogen array in rat hepatoma cells. J. Cell Biol. 36, 410–414 (1968)

    Google Scholar 

  42. Ozawa, K., Kitamura, O., Yamaoka, Y., et al.: Hepatic cellular responses to liver cancer: Abnormalities in metabolism of mitochondria isolated from human liver involved with carcinoma. Ann. Surg. 179, 79–87 (1974)

    Google Scholar 

  43. Ozawa, K., Yamaoka, Y., Kitamura, O., et al.: Clinical application of cytochrome a(+a 3) assay of mitochondria from liver specimens: An aid in determining metabolic tolerance of liver remnant for hepatic resection. Ann. Surg. 180, 868–876 (1974)

    Google Scholar 

  44. Schwarz, K.: The cellular mechanism of vitamin E action: Direct and indirect effect of α-tocopherol on mitochondrial respiration. Ann. N.Y. Acad. Sci. 203, 45–52 (1972)

    Google Scholar 

  45. Oshino, N., Chance, B., Sies, H., et al.: The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch. Biochem. Biophys. 154, 117–131 (1973)

    Google Scholar 

  46. Sies, H.: Biochemie des Peroxysoms in der Leberzelle. Angew. Chem. 86, 789–801 (1974)

    Google Scholar 

  47. Boveris, A., Chance, B.: The mitochondrial generation of hydrogen peroxide. Biochem. J. 134, 707–716 (1973)

    Google Scholar 

  48. Loschen, G., Azzi, A., Flohé, L.: Mitochondrial H2O2 formation: Relationship with energy conservation. FEBS Lett. 33, 84–88 (1973)

    Google Scholar 

  49. Hafeman, D. G., Sunde, R. A., Hoekstra, W. G.: Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J.Nur. 104, 580–586 (1974)

    Google Scholar 

  50. Woody, N. C., Pupene, M. B.: Excretionb of pipecolic acid by infants and by patients with hyperlysinemia. Pediat. Res. 1, 89–95 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft, SFB 51, “Medizinische Moleukularbiologie und Biochemie” (H.T.V., V.H., B.B.), Sci 182/1-4 (G.S.), and by the Landesamt für Forschung des Landes Nordrhein-Westfalen (H.J.B.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Versmold, H.T., Bremer, H.J., Herzog, V. et al. A metabolic disorder similar to Zellweger syndrome with hepatic acatalasia and absence of peroxisomes, altered content and redox state of cytochromes, and infantile cirrhosis with hemosiderosis. Eur J Pediatr 124, 261–275 (1977). https://doi.org/10.1007/BF00441934

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00441934

Key words

Navigation