Skip to main content
Log in

Accumulation of pristanic acid (2, 6, 10, 14 tetramethylpentadecanoic acid) in the plasma of patients with generalised peroxisomal dysfunction

  • Original Investigations
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The plasma of some patients with biochemical evidence of a generalised peroxisomal dysfunction (GPD) show greatly increased levels of phytanic acid as well as its α-oxidation product, pristanic acid (2, 6, 10, 14-tetramethylpentadecanoic acid). Increased amounts of 14- and 16- carbon branched chain fatty acids are also found in some of these patients. As pristanic acid is present in normal or near-normal amounts in classical Refsum disease and rhizomelic chondrodysplasia, two disorders characterised by deficiencies in phytanic acid oxidation, we speculate that its accumulation is not secondary to a defect in the α-oxidation of phytanic acid, but is indicative of a block in the peroxisomal β-oxidation of pristanic acid. The finding of phytanic acid, as well as a number of its metabolites in patients with inherited defects in peroxisomal biogenesis indicates that a number of the steps in phytanic acid degradation may be confined to peroxisomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GPD:

generalised peroxisomal dysfunction

VLCFA:

very long chain fatty acids

THCA:

3α, 7α, 12α-trihydroxy-5β-cholestan-26-oic acid

br:

branched chain fatty acid

ALD:

adrenoleukodystrophy

DHAPAT:

dihydroxyacetone phosphate acyltransferase

References

  1. Aubourg P, Robain O, Rocchicciol I, Dancea S, Scott J (1985) The cerebro-hepato-renal (Zellweger) syndrome: lamellar lipid profiles in adrenocortical, hepatic mesenchymal, astrocyte cells and increased levels of very long chain fatty acids and phytanic acid in the plasma. J Neurol Sci 69:9–25

    Google Scholar 

  2. Avigan J (1966) Pristanic acid (2, 6, 10, 14 tetramethylpentadecanoic acid) and phytanic acid (3, 7, 11, 15 tetramethylhexadecanoic acid) content of human and animal tissues. Biochem Biophys Acta 125:607–610

    Google Scholar 

  3. Beard ME (1986) Peroxisomes in fibroblasts from skin of Refsum disease patients. J Histochem Cytochem 33:480–484

    Google Scholar 

  4. Berkovic SF, Zajac JD, Warburton DJ, Merory JD, Fellenberg AJ, Poulos A, Pollard AC (1983) Adrenomyeloneuropathy —clinical and biochemical diagnosis. Aust NZ J Med 13:594–600

    Google Scholar 

  5. Danks DM, Tippett P, Adams C, Campbell P (1975) Cerebrohepato-renal syndrome of Zellweger. A report of eight cases with comments upon the evidence, liver lesion and a fault in pipecolic acid metabolism. J Pediatr 86:382–387

    Google Scholar 

  6. Dulaney JT, Williams M, Evans JE, Costello CE, Kolodny EH (1978) Occurrence of novel branched-chain fatty acids in Refsum disease. Biochem Biophys Act 529:1–12

    Google Scholar 

  7. Egge H, Murawski U, Ryhage R, Gyorgy P, Chatranon W, Zilliken F (1972) Minor constituents of human milk. IV. Analysis of branched chain fatty acids. Chem Phys Lipids 8:42–55

    Google Scholar 

  8. Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK, Ritch RH, Norton WT, Raplin I, Gartner LM (1973) Peroxisomal and mitochondrial defects in the cerebrohepato-renal syndrome. Science 182:62–64

    Google Scholar 

  9. Goldfischer S, Collins J, Rapin I, Colthoff-Schiller B, Chang CG, Nigro M, Black VM, Javitt MB, Moser HW, Lazarow PB (1985) Peroxisomal defects in neonatal onset and x-linked adrenoleukodystrophies. Science 227:67–70

    Google Scholar 

  10. Hansen RP, Morrison JD (1964) The isolation and identification of 2, 6, 10, 14 tetramethylpentadecanoic acid from butter fat. Biochem J 92:225–229

    Google Scholar 

  11. Herndon JH, Steinberg D, Uhlendorf BW, Fales HM (1969) Refsum disease: characterisation of the enzyme defect in cell culture. J Clin Invest 48:1017–1032

    Google Scholar 

  12. Heymans HSA, Oorthyuys JWE, Nelck G, Wanders RJA, Schutgens RBH (1985) Rhizomelic chondrodysplasia punctata: another peroxisomal disorder. N Engl J Med 313:187–188

    Google Scholar 

  13. Jaffe R, Crumrine P, Hashida Y, Moser HW (1982) Neonatal adrenoleukodystrophy: clinical, pathological and biochemical delineation of a syndrome affecting both males and females. Am J Pathol 108:100–111

    Google Scholar 

  14. Lough AK (1973) The chemistry and biochemistry of phytanic, pristanic and related acids. Progr Chem Fats 14:5–48

    Google Scholar 

  15. Moser HW, Moser AB, Singh I, O'Neill BP (1984) Adrenoleukodystrophy: survey of 303 cases: biochemistry, diagnosis and therapy. Ann Neurol 16:628–641

    Google Scholar 

  16. Moser AE, Singh I, Brown FR, Solish GI, Kelley RI, Benke PJ, Moser HW (1984) The cerebro-hepato-renal syndrome (Zell-weger syndrome) increased levels and impaired degradation of very long chain fatty acids and their use in prenatal diagnosis. N Engl J Med 310:1141–1146

    Google Scholar 

  17. Poulos A, Sharp P, Fellenberg AJ, Danks DM (1985) Cerebrohepato-renal (Zellweger) syndrome, adrenoleukodystrophy and Refsum disease: plasma changes and fribroblast phytanic acid oxidase. Hum Genet 70:172–177

    Google Scholar 

  18. Poulos A, Singh H, Paton B, Sharp P, Derwas N (1986) Accumulation and defective β-oxidation of very long chain fatty acids in Zellweger syndrome, adrenoleukodystrophy and Refsum disease variants. Clin Genet 29:397–408

    Google Scholar 

  19. Poulos A, Sharp P, Johnson DW, White IG, Fellenberg AJ (1986) The occurrence of polyenoic fatty acids with greater than 22 carbon atoms in mammalian spermatozoa. Biochem J 240:891–895

    Google Scholar 

  20. Poulos A, Sharp P, Singh H, Johnson D, Fellenberg A, Pollard AC (1986) Detection of a homologous series of C26−C38 polyenoic fatty acids in the brain of patients without peroxisomes (Zellweger syndrome). Biochem J 235:607–610

    Google Scholar 

  21. Poulos A, Derwas N, Fellenberg AJ, Johnson DW, Paton B, Sharp P, Singh H (1987) Inherited peroxisomal disorders: clinical, chemical and biochemical data. Proceedings of 7th International Congress of Human Genetics, Berlin

  22. Robertson EF, Poulos A, Sharp P, Manson J, Wise G, Jaunzems A, Carter R (1988) Treatment of infantile phytanic acid storage disease: clinical, biochemical and ultrastructural findings in two children treated for 2 years. Eur J Pediatr 147:133–142

    Google Scholar 

  23. Roels F, Cornelis A, Poll-The BT, Aubourg P, Ogier H, Scotto J, Saudubray JM (1986) Hepatic peroxisomes are deficient in infantile Refsum disease: a cytochemical study of 4 cases. Am J Med Genet 25:257–271

    Google Scholar 

  24. Schutgens RBH, Romeyn GJ, Wanders RJA, van den Bosch H, Schrakamp G, Heymans HSA (1984) Deficiency of acylCoA: dihydroxyacetone phosphate acyltransferase in patients with Zellweger (cerebro-hepato-renal) syndrome. Biochem Biophys Res Comm 120:179–184

    Google Scholar 

  25. Schutgens ABH, Heymans HSA, Wanders RHA, van den Bosch H, Tager JM (1986) Peroxisomal disorders. A newly recognised group of genetic diseases. Eur J Pediatr 144:430–440

    Google Scholar 

  26. Scotto JM, Hadchouel M, Odievre M, Laudat MH, Sandubray JM, Dulac O, Beucler I, Beaune P (1982) Infantile phytanic acid storage disease, a possible variant of Refsum disease: three cases including ultrastructural studies of the liver. J Inherited Metab Dis 5:83–90

    Google Scholar 

  27. Singh H, Poulos A (1986) A comparative study of stearic and lignoceric acid oxidation by human skin fibroblasts. Arch Biochem Biophys 250:171–179

    Google Scholar 

  28. Singh I, Moser AE, Goldfisher S, Moser HW (1984) Lignoceric acid is oxidised in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc Natl Acad Sci USA 81:4203–4207

    Google Scholar 

  29. Singh H, Derwas N, Poulos A (1987) β-Oxidation of very long chain fatty acids and their coenzyme A derivatives by human skin fibroblasts. Arch Biochem Biophys 254:526–533

    Google Scholar 

  30. Skjeldal OH, Stokke O, Norseth J, Lie SO (1986) Phytanic acid oxidase activity in cultured skin fibroblasts. Diagnostic usefulness and limitations. Scan J Clin Lab Invest 46:283–287

    Google Scholar 

  31. Spranger JW, Pitz JM, Bidder U (1971) Heterogeneity of chondrodysplasia punctata. Hum Genet 11:190–212

    Google Scholar 

  32. Steinberg D (1978) Phytanic acid storage disease (Refsum syndrome). In: Stanbury JB, Wyngaarden JB, Fredrickson DS (eds) The metabolic basis for inherited disease, 4th ed. McGraw-Hill, New York, pp 688–706

    Google Scholar 

  33. Stokke O, Skrede S, EK J, Bjorkhem I (1984) Refsum disease adrenoleukodystrophy and the Zellweger syndrome. Scand J Clin Lab Invest 44:463–464

    Google Scholar 

  34. Stokke O, Skjeldal OH, Hoie K (1986) Disorders related to the metabolism of phytanic acid. Scand J Clin Lab Invest [Suppl 46] 184:3–10

    Google Scholar 

  35. Wanders RJA, Schutgens RBH, Schrakamp G, van den Bosch H, Tager JM, Schram AW, Hashimoto T, Poll-The BT, Saudubray JM (1986) Infantile Refsum disease: deficiency of catalase-containing particles (peroxisomes), alkyldihydroxy-acetone phosphate synthase and peroxisomal β-oxidation enzyme proteins. Eur J Pediatr 145:172–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulos, A., Sharp, P., Fellenberg, A.J. et al. Accumulation of pristanic acid (2, 6, 10, 14 tetramethylpentadecanoic acid) in the plasma of patients with generalised peroxisomal dysfunction. Eur J Pediatr 147, 143–147 (1988). https://doi.org/10.1007/BF00442211

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00442211

Key words

Navigation