Skip to main content
Log in

Deficits in selective and sustained attention processes in early treated children with phenylketonuria — result of impaired frontal lobe functions?

  • Metabolic Diseases
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Twenty normally intelligent children with early treated phenylketonuria (PKU) (IQ: mean=101.4, SD=10.0; age: mean=10 years 11 months, SD=1.3 years) and 20 healthy controls, matched for age, sex and IQ, were assessed for their selective (Stroop Task) and sustained attention (Test-d-2). Using positron emission tomography an activation of the frontal lobe during the Stroop task had previously been demonstrated. In addition to the Stroop Task and the Test-d-2, a short-term memory test as a “non-frontal-lobe-function-task” was administered to all subjects. Group comparisons demonstrated that PKU children had specific deficits in selective and sustained attention, which were significantly correlated with the concurrent serum phenylalanine concentration.

Conclusion

The results give evidence that even dietary treated children with PKU were suffering from impaired attentional control mechanisms in spite of a normal IQ. The deficits might be the result of impaired frontal lobe functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CN :

Colour naming

CWIT :

Colour-Word-Interference-Task

CWR :

reading of colour words

INT-T :

Interference Task time

INT-M :

Interference Task mistakes

PET :

positron emission tomography

Phe :

phenylalanine

PKU :

phenylketonuria

References

  1. Bäumler G (1985) Farbe-Wort-Interferenztest (FWIT) nach JR Stroop. Verlag für Psychologie, Dr CJ Hogrefe Göttingen

    Google Scholar 

  2. Bench CJ, Frith CJ, Grasby PM, Friston KJ, Frackowiak RSJ, Dolan RJ (1993) Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 31 (9):907–922

    PubMed  Google Scholar 

  3. Bick U, Ullrich K, Stöber U, Möller H, Schuierer G, Ludolph AC, Oberwittler C, Weglage J, Wendel U (1993) White matter abnormalities in patients with treated hyperphenylalaninaemia: magnetic resonance, relaxometry and proton spectroscopy findings. Eur J Pediatr 152:1012–1020

    PubMed  Google Scholar 

  4. Blascovics ME, Scheffler GE, Hack S (1974) Phenylketonuria. Differential diagnosis. Arch Dis Child 49:835–843

    PubMed  Google Scholar 

  5. Brass CA, Greengard O (1982) Modulation of cerebral catecholamine concentrations during hyperphenylalaninemia. Biochem J 208:765–771

    PubMed  Google Scholar 

  6. Brickenkamp R (1994) Test d 2 Aufmerksamkeits-Belastungs-Test. Verlag für Psychologie, Dr CJ Hogrefe, Göttingen

    Google Scholar 

  7. Brown RG, Marsden CD (1988) Internal versus external cues and the control of attention in Parkinson's disease. Brain 111:323–345

    PubMed  Google Scholar 

  8. Cleary MA, Walter JH, Wraith JE, Jenkins JPR, Alani SM, Tyler K, Whittle D (1994) Magnetic resonance imaging of the brain in phenylketonuria. Lancet 344:87–90

    PubMed  Google Scholar 

  9. Corbetta M, Miezin FM, Dobmeyer S, Shulma GL, Petersen SE (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 11: 2383–2402

    PubMed  Google Scholar 

  10. Curtius HC, Baerlocher K, Vollmin JA (1972) Pathogenesis of phenylketonuria: inhibition of dopa and catecholamine synthesis in patients with phenylketonuria. Clin Chem Acta 42:235–239

    Google Scholar 

  11. Diamond A, Ciaramitaro V, Donner E, Djali S, Robinson MB (1994) An animal model of early-treated PKU. J Neurosci 14:3072–3082

    PubMed  Google Scholar 

  12. Divac I, Bjorklund A, Lindvall O, Passingham R (1978) Converging projections from the mediodorsal thalamic nucleus and mesencephalic dopaminergic neurons to the neocortex in three species. J Comp Neurol 180:59–72

    PubMed  Google Scholar 

  13. German Pediatric Society (1990) Limits in serum phenylalanine concentrations for different ages. Convention of the “Deutsche Arbeitsgemeinschaft für Pädiatrische Stoffwechselstörungen”. Monatscschr Kinderheilkd 136:636

    Google Scholar 

  14. Holtzman N, Richard M, Kornmal A (1986) Effect of age at loss of dietary control on intellectual performance and behavior of children with phenylketonuria. N Engl J Med 314:593–608

    PubMed  Google Scholar 

  15. Krause WL, Halminski M, McDonald L, Dembure P, Salvo R, Freides D, Elsas LJ (1985) Biochemical and neuropsychological effects of elevated plasma phenylalanine in patients with treated phenylketonuria: a model for the study of phenylalanine and brain function in man. J Clin Inv 75:40–48

    PubMed  Google Scholar 

  16. Kupfermann I (1991) Localization of higher cognitive and affective functions: the association cortices. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science. Appleton and Lange. Norwalk, Connecticut

    Google Scholar 

  17. Lange KW, Robbins TW, Mardsen CD, James M, Owen AM, Paul GM (1992)l-Dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe function. Psychopharm 197:394–404

    Google Scholar 

  18. Lou HC, Güttler G, Lykelund C, Bruhn P, Niederwieser A (1985) Decreased vigilance and neurotransmitter synthesis after discontinuation of dietary treatment of phenylketonuria in adolescents. Eur J Pediatr 144:17–20

    PubMed  Google Scholar 

  19. McKean CM (1972) The effects of high phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain. Arch Dis Child 46:606–615

    Google Scholar 

  20. Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64

    PubMed  Google Scholar 

  21. Pardo JV, Pardo PJ, Janer KW, Raichle ME (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci 87:256–259

    PubMed  Google Scholar 

  22. Perret E (1974) The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia 12:323–330

    PubMed  Google Scholar 

  23. Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex. Involvement in working memory. Science 251:947–950

    PubMed  Google Scholar 

  24. Schmidt E, Rupp A, Burgard P, Pietz J, Weglage J, Sonneville L de (1994) Sustained attention in adult phenylketonuria: the influence of the concurrent phenylalanine-blood-level. J Clin Exp Neuropsychol 16:681–688

    PubMed  Google Scholar 

  25. Smith I, Beasley MG, Wolf OH, Ades AE (1988) Intelligence and quality of dietary treatment in phenylketonuria. Arch Dis Child 65:472–478

    Google Scholar 

  26. Stam CJ, Visser SL, Op-de-Coul AA, De-Sonneville LM, Schellensd RL, Brunia CH, de-Smet JS, Gielen G (1993) Disturbed frontal regulation of attention in Parkinson's disease. Brain 116:1139–1158

    PubMed  Google Scholar 

  27. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662

    Google Scholar 

  28. Ullrich K, Weglage J, Oberwittler C, Pietsch M, Fünders B, Eckardstein v H, Colombo JP (1994) Effect ofl-Dopa on pattern visual evoked potentials (P-100) and neuropsychological tests in untreated adult patients with phenylketonuria. J Inher Metab Dis 17:349–352

    PubMed  Google Scholar 

  29. Wechsler D (1991) Handanweisung zum Hamburg Wechsler Intelligenztest für Kinder (HAWIK-R). Huber, Bern

    Google Scholar 

  30. Weglage J, Fünders B, Wilken B, Schubert D, Ullrich K (1993) School performance and intellectual outcome in adolescents with phenylketonuria. Acta Paediatr Scand 81:582–586

    Google Scholar 

  31. Weglage J, Fünders B, Wilken B, Schubert D, Schmidt E, Burgard P, Ullrich K (1992) Psychological and social findings in adolescents with phenylketonuria. Eur J Pediatr 151:522–525

    PubMed  Google Scholar 

  32. Weglage J, Pietsch M, Fünders B, Koch HG, Ullrich K (1995) Neurological findings in early treated phenylketonuria. Acta Paediatr 84:411–415

    PubMed  Google Scholar 

  33. Weiss RH (1987) Grundintelligenztest Skala 2 CFT 20. Verlag für Psychologie, Dr JC Hogrefe, Göttingen

    Google Scholar 

  34. Welsh MC, Pennington BF, Ozonoff S, Rouse B, McCabe ERB (1990) Neuropsychology of early-treated phenylketonuria: Specific executive function deficits. Child Dev 61:1697–1713

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weglage, J., Pietsch, M., Fünders, B. et al. Deficits in selective and sustained attention processes in early treated children with phenylketonuria — result of impaired frontal lobe functions?. Eur J Pediatr 155, 200–204 (1996). https://doi.org/10.1007/BF01953938

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01953938

Key words

Navigation