Skip to main content
Log in

Interaction of alleles of therelA, relC andspoT genes inEscherichia coli: Analysis of the interconversion of GTP, ppGpp and pppGpp

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Mutants in thespoT gene have been isolated as stringent second site revertants of therelC mutation. These show varying degrees of the characteristics associated with thespoT1 gene,viz relative amount and absolute levels of both pppGpp and ppGpp and the decay rate of the latter. The entry of3H-guanosine into GTP and ppGpp pools inspoT + andspoT1 cells either growing exponentially or during amino acid starvation was determined, and the rate of ppGpp synthesis and its decay constant calculated. During exponential growth the ppGpp pool is 2-fold higher, its decay constant 10-fold lower, and its synthesis rate 5-fold lower inspoT - than inspoT + cells; during amino acid starvation the ppGpp pool is 2-fold higher, its decay constant 20-fold lower, and its synthesis rate 10-fold lower inspoT than inspoT + cells. In one of the “intermediate”spoT mutants the rate of entry of3H-guanosine into GTP, ppGpp and pppGpp was measured during amino acid starvation. The data form the basis of a model for the interconversion of the guanosine nucleotides in which the flow is:GDP→GTP→pppGpp→ppGpp→Y. Calculations of the rates of synthesis and conversion of pppGpp and ppGpp under various conditions in variousspoT + andspoT - strains indicate that the ppGpp concentration indirectly controls the rate of pppGpp synthesis.

ThespoT1 allele was introduced into various relaxed mutants. It was shown that many phenomena associated with the relaxed response ofrelC and “intermediate”relA mutants were phenotypically suppressed when thespoT1 allele was introduced into these mutants. These double mutants exhibit ppGpp accumulation, rate of RNA accumulation, rate of β-galactosidase synthesis, and heat lability of β-galactosidase synthesized during amino acid starvation similar to the stringent wild-type. It is concluded that the relaxed response is due directly to the lack of ppGpp and that the stringest response is due directly to ppGpp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann, B.J.: Pedigrees of some mutant strains ofE. coli K12. Bact. Rev.36, 525–557 (1972)

    PubMed  CAS  Google Scholar 

  • Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map ofE. coli K12. Bact. Rev.40, 116–167 (1976)

    PubMed  CAS  Google Scholar 

  • Block, R., Haseltine, W.A.: Thermolability of the stringent factor inrel mutants ofE. coli. J. molec. Biol.77, 625–628 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Boquet, P.L., Devynck, M.A., Monnier, C., Fromgeot, P., Röschenthaler, R.: Inhibition of stable RNA synthesis by levallorphan: Implications of compounds MSI and MSII. Europ. J. Biochem.40, 31–42 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Cochran, J.W., Byrne, R.W.: Isolation and properties of a ribosomebound factor required for ppGpp and pppGpp synthesis inEscherichia coli. J. biol. Chem.249, 353–360 (1974)

    PubMed  CAS  Google Scholar 

  • Dennis, P., Nomura, M.: Stringent control of the transcriptional activities of ribosomal protein genes inEscherichia coli. Nature (Lond.)255, 460–465 (1975)

    Article  CAS  Google Scholar 

  • Fiil, N.: A functional analysis of therel gene inEscherichia coli. J. molec. Biol.45, 195–203 (1969)

    Article  Google Scholar 

  • Fiil, N., Friesen, J.D.: Isolation of “relaxed” mutants ofEscherichia coli. J. Bact.95, 729–731 (1968)

    PubMed  CAS  Google Scholar 

  • Fiil, N.P., Meyenburg, K.v., Friesen, J.D.: Accumulation and turnover of guanosine tetraphosphate inEscherichia coli. J. molec. Biol.71, 769–783 (1972)

    PubMed  CAS  Google Scholar 

  • Fiil, N.P., Mortensen, U., Friesen, J.D.: Genes involved in magic spot metabolism. In: Control of ribosome synthesis, Alfred Benzon Symposium IX, pp. 437–444. Copenhagen: Munksgaard 1976

    Google Scholar 

  • Friesen, J.D., Fiil, N.P., Meyenburg, K.v.: Synthesis and turnover of basal level guanosine tetraphosphate inEscherichia coli. J. biol. Chem.250, 304–309 (1975)

    PubMed  CAS  Google Scholar 

  • Friesen, J.D., Fiil, N.P., Parker, J.M., Haseltine, W.A.: A new relaxed mutant ofEscherichia coli with an altered 50S ribosomal subunit. Proc. nat. Acad. Sci. (Wash.)71, 3465–3469 (1974)

    Article  CAS  Google Scholar 

  • Friesen, J.D., Parker, J., Watson, R.J., Pedersen, S., Pedersen, F.S.: Isolation of a lambda transducing bacteriophage carrying therelA gene ofEscherichia coli. J. Bact.127, 917–922 (1976)

    PubMed  CAS  Google Scholar 

  • Gallant, J., Erlich, H., Hall, B., Laffler, T.: Analysis of RC function. Cold Spr. Harb. Symp. quant. Biol.35, 397–405 (1970)

    CAS  Google Scholar 

  • Gallant, J., Irr, J., Cashel, M.: The mechanism of amino acid control of guanylate and adenylate biosynthesis. J. biol. Chem.246, 5812–5816 (1971)

    PubMed  CAS  Google Scholar 

  • Gallant, J., Lazzarini, R.A.: The regulation of ribosomal RNA synthesis and degradation in bacteria. In: Protein synthesis, Vol. 2, pp. 309–359. Ed. E.H. McConkey. New York and Basel: Marcel Dekker, Inc. 1976

    Google Scholar 

  • Gallant, J., Margason, C., Finch, B.: On the turnover of ppGpp inEscherichia coli. J. biol. Chem.247, 6055–6058 (1972)

    PubMed  CAS  Google Scholar 

  • Ginther, C.L., Ingraham, J.L.: Cold sensitive mutant ofSalmonella typhimurium defective in nucleoside diphosphokinase. J. Bact.118, 1020–1076 (1974)

    PubMed  CAS  Google Scholar 

  • Hall, B., Gallant, J.: Defective translation in RC- cells. Nature (Lond.) New Biol.237, 131–135 (1972)

    CAS  Google Scholar 

  • Hamel, E., Cashel, M.: Role of guanosine nucleotides in protein synthesis. Elongation factor G and guanosine 5′-triphosphate, 3′-diphosphate. Proc. nat. Acad. Sci. (Wash.)70, 3250–3254 (1973)

    Article  CAS  Google Scholar 

  • Hansen, M.T., Pato, M.L., Molin, S., Fiil, N.P., Meyenburg, K.v.: Simple downshift and resulting lack of correlation between ppGpp pool size and ribonucleic acid accumulation. J. Bact.122, 585–591 (1975)

    PubMed  CAS  Google Scholar 

  • Haseltine, W.A., Block, R.: Synthesis of guanosine tetra-and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of the ribosome. Proc. nat. Acad. Sci. (Wash.)70, 1564–1568 (1973)

    Article  CAS  Google Scholar 

  • Haseltine, W.A., Block, R., Gilbert, W., Weber, K.: MSI and MSII made on ribosome in idling step of protein synthesis. Nature (Lond.)238, 381–385 (1972)

    Article  CAS  Google Scholar 

  • Irr, J., Gallant, J.: The control of ribonucleic acid synthesis inEscherichia coli. II. Stringent control of energy metabolism. J. biol. Chem.244, 2233–2239 (1969)

    PubMed  CAS  Google Scholar 

  • Kari, C.: In general discussion. In: Control of ribosome synthesis, Alfred Benzon Symposium IX, eds. N.O. Kjeldgaard and O. Maaløe, pp. 445–446. Copenhagen: Munksgaard 1976

    Google Scholar 

  • Laffler, T., Gallant, J.:spoT, a new genetic locus involved in the stringent response inE. coli. Cell1, 27–30 (1974a)

    Article  Google Scholar 

  • Laffler, T., Gallant, J.: Stringent control of protein synthesis inEscherichia coli. Cell3, 47–49 (1974b)

    Article  PubMed  CAS  Google Scholar 

  • Lavallé, R.: Nouveaux mutants de régulation de la synthèse de l'ARN. Bull. Soc. Chim. biol. (Paris)47, 1567–1570 (1965)

    Google Scholar 

  • Lazzarini, R.A., Dahiberg, A.E.: The control of ribonucleic acid synthesis during amino acid deprivation inEscherichia coli. J. biol. Chem.246, 420–429 (1971)

    PubMed  CAS  Google Scholar 

  • Lennox, E.S.: Transduction of linked genetic characters of the host by bacteriophage P1. Virology1, 190–201 (1955)

    Article  PubMed  CAS  Google Scholar 

  • Pardee, A.B., Jacob, F., Monod, J.: The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase inE. coli. J. molec. Biol.1, 165–173 (1959)

    Article  CAS  Google Scholar 

  • Parker, J., Watson, R.J., Friesen, J.D., Fiil, N.P.: A relaxed mutant with an altered ribosomal protein L11. Molec. gen. Genet.144, 111–114 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, F.S., Lund, E., Kjeldgaard, N.O.: Codon specific tRNA dependentin vitro synthesis of ppGpp and pppGpp. Nature (Lond.) New Biol.243, 13–15 (1973)

    CAS  Google Scholar 

  • Perlman, R., Crombrugghe, B. De, Pastan, I.: Cyclic AMP regulates catabolite and transient repression inE. coli. Nature (Lond.)223, 810–812 (1969)

    CAS  Google Scholar 

  • Stamminger, G., Lazzarini, R.A.: Altered metabolism of the guanosine tetraphosphate, ppGpp, in mutants ofE. coli. Cell1, 85–90 (1974)

    Article  CAS  Google Scholar 

  • Zabos, P., Bauer, P., Schlotthauer, J., Horváth, I.: Stringent factorindependent synthesis of pppGpp inEscherichia coli strains. FEBS Lett.64, 107–110 (1976)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H.G. Wittmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiil, N.P., Willumsen, B.M., Friesen, J.D. et al. Interaction of alleles of therelA, relC andspoT genes inEscherichia coli: Analysis of the interconversion of GTP, ppGpp and pppGpp. Molec. Gen. Genet. 150, 87–101 (1977). https://doi.org/10.1007/BF02425329

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02425329

Keywords

Navigation