Skip to main content
Log in

Escherichia coli mutY-dependent mismatch repair involves DNA polymerase I and a short repair tract

  • Short Communication
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Repair of heteroduplex DNA containing an A/G mismatch in a mutL background requires the Escherichia coli mutY gene function. The mutY-dependent in vitro repair of A/G mismatches is accompanied by repair DNA synthesis on the DNA strand bearing mispaired adenines. The size of the mufY-dependent repair tract was measured by the specific incorporation of α-[32P]dCTP into different restriction fragments of the repaired DNA. The repair tract is shorter than 12 nucleotides and longer than 5 nucleotides and is localized to the 3′ side of the mismatched adenine. This repair synthesis is carried out by DNA polymerase I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Au KG, Cabrera M, Miller JH, Modrich P (1988) Escherichia coli mutY gene product is required for specific A-G → C-G mismatch correction. Proc Natl Acad Sci USA 85:9163–9166

    Google Scholar 

  • An KG, Clark S, Miller JH, Modrich P (1989) Escherichia coli mutY gene encodes an adenine glycosylase active on G-A mispairs. Proc Natl Acad Sci USA 86:8877–8881

    Google Scholar 

  • Au KG, Welsh K, Modrich P (1992) Initiation of methyl-directed mismatch repair. J Biol Chem 267:12142–12148

    Google Scholar 

  • Bailly V, Verly WG (1987) Escherichia coli endonuclease III is not an endonuclease but a β-elimination catalyst. Biochem J 242:565–572

    Google Scholar 

  • Bauer J, Krammer G, Knippers R (1981) Asymmetric repair of bacteriophage T7 heteroduplex DNA. Mol Gen Genet 181:541–547

    Google Scholar 

  • Breimer LH, Lindahl T (1984) DNA glycosylase activities for thymine residues damaged by ring saturation, fragmentation, or ring contraction are functions of endonuclease III in Escherichia coli. J Biol Chem 259:5543–5548

    Google Scholar 

  • Bruni R, Martin D, Jiricny J (1988) d(GATC) sequences influence Escherichia coli mismatch repair in a distance-dependent manner from positions both upstream and downstream of the mismatch. Nucleic Acids Res 16:4875–4890

    Google Scholar 

  • Demple B, Linn S (1980) DNA N-glycosylase and UV repair. Nature 287:203–208

    Google Scholar 

  • Dzidic S, Radman M (1989) Genetic requirements for hyper-recombination by very short patch mismatch repair: involvement of Escherichia coli DNA polymerase I. Mol Gen Genet 217:254–256

    Google Scholar 

  • Friedberg EC (1985) DNA repair. WH Freeman, New York

    Google Scholar 

  • Hennecke F, Kolmar H, Brundl K, Fritz HJ (1991) The vsr gene product of E. coli K-12 is a strand- and sequence-specific DNA mismatch endonuclease. Nature 353:776–778

    Google Scholar 

  • Joyce CM, Grindley NDF (1984) Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. J Bacteriol 158:636–643

    Google Scholar 

  • Katcher HL, Wallace S (1983) Characterization of Escherichia coli X-ray endonuclease, endonuclease III. Biochemistry 22:4071–4081

    Google Scholar 

  • Lahue RS, An KG, Modrich P (1989) DNA mismatch correction in a defined system. Science 245:160–164

    Google Scholar 

  • Lahue RS, Su SS, Modrich P (1987) Requirement for d(GATC) sequences in Escherichia coli mutHLS mismatch correction. Proc Natl Acad Sci USA 84:1482–1486

    Google Scholar 

  • Langle-Rouault F, Maenhaut-Michel G, Radman M (1986) GATC sequence and mismatch repair in Escherichia coli. EMBO J 5:2009–2013

    Google Scholar 

  • Lieb M (1983) Specific mismatch correction in bacteriophage lambda crosses by very short patch repair. Mol Gen Genet 191:118–125

    Google Scholar 

  • Lieb M (1985) Recombination in the lambda repressor gene: evidence that very short patch (vsp) mismatch correction restores a specific sequence. Mol Gen Genet 199:465–470

    Google Scholar 

  • Lieb M, Allen E, Read D (1986) Very short patch mismatch repair in phage lambda: repair sites and length of repair tracts. Genetics 114:1041–1060

    Google Scholar 

  • Lu AL (1987) Influence of GATC sequences on Escherichia coli DNA mismatch repair in vitro. J Bacteriol 169:1254–1259

    Google Scholar 

  • Lu AL, Chang DY (1988a) Repair of single base-pair transversion mismatches of Escherichia coli in vitro: correction of certain A/G mismatches is independent of dam methylation and host mutHLS gene functions. Genetics 118:593–600

    Google Scholar 

  • Lu AL, Chang DY (1988b) A novel nucleotide excision repair for the conversion of an A/G mismatch to C/G base pair in E. coli. Cell 54:805–812

    Google Scholar 

  • Lu AL, Clark S, Modrich P (1983) Methyl-directed repair of DNA base pair mismatches in vitro. Proc Natl Acad Sci USA 80:4639–4643

    Google Scholar 

  • Lu AL, Welsh K, Clark S, Su SS, Modrich P (1984) Repair of DNA base-pair mismatches in extracts of Escherichia coli. Cold Spring Harbor Symp Quant Biol 49:589–596

    Google Scholar 

  • Michaels ML, Miller JH (1992) The GO repair system protects organisms from the mutagenic effect of 8-hydroxyguanine (7,8dihydro-8-oxo-guanine). J Bacteriol 174:6321–6325

    Google Scholar 

  • Michaels ML, Pham L, Nghiem Y, Cruz C, Miller JH (1990) MutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III. Nucleic Acids Res 18:3841–3845

    Google Scholar 

  • Michaels ML, Cruz C, Grollman A, Miller JH (1992) Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Natl Acad Sci USA 89:7022–7025

    Google Scholar 

  • Modrich P (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25:229–253

    Google Scholar 

  • Moriya M, Ou C, Bodepudi V, Johnson F, Takeshita M, Grollman AP (1991) Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res 254:281–288

    Google Scholar 

  • Nevers P, Spatz H (1975) Escherichia coli mutants uvrD uvrE deficient in gene conversion of lambda heteroduplexes. Mol Gen Genet 139:233–243

    Google Scholar 

  • Nghiem Y, Cabrera M, Cupples CG, Miller JH (1988) The mutY gene: a mutator locus in Escherichia coli that generates G:e to T:A transversions. Proc Natl Acad Sci USA 85:2709–2713

    Google Scholar 

  • Pukkila PJ, Peterson J, Herman G, Modrich P, Meselson M (1983) Effects of high levels of DNA adenine methylation on methyldirected mismatch repair in Escherichia coli. Genetics 104:571–582

    Google Scholar 

  • Radicella JP, Clark EA, Fox MS (1988) Some mismatch repair activities in Escherichia coli. Proc Natl Acad Sci USA 85:9674–9678

    Google Scholar 

  • Radicella JP, Clark EA, Chen S, Fox MS (1993) Patch length of localized repair events: role of DNA polymerase I in mutY-de-pendent mismatch repair. J Bacteriol 175:7732–7736

    Google Scholar 

  • Radman M (1989) Mismatch repair and the fidelity of genetic recombination. Genome 31:69–73

    Google Scholar 

  • Rayssiguier C, Thaler DS, Radman M (1989) The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342:396–401

    Google Scholar 

  • Schaaper RM (1988) Mechanisms of mutagenesis in the Escherichia coli mutator mutD5: role of DNA mismatch repair. Proc Natl Acad Sci USA 85:8126–8130

    Google Scholar 

  • Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349:431–434

    Google Scholar 

  • Su SS, Lahue RS, Au KG, Modrich P (1988) Mispair specificity of methyl-directed DNA mismatch correction in vitro. J Biol Chem 263:6829–6835

    Google Scholar 

  • Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S (1991) 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci USA 88:4690–4694

    Google Scholar 

  • Tsai-Wu JJ, Radicella JP, Lu AL (1991) Nucleotide sequence of the Escherichia coli micA gene required for A/G-specific mismatch repair: identity of MicA and MutY. J Bacteriol 173:1902–1910

    Google Scholar 

  • Tsai-Wu JJ, Liu HF, Lu AL (1992) Escherichia coli MutY protein has both N-glycosylase and apurinic/apyramidinic (AP) endonuclease activities on A-C and A G mispairs. Proc Natl Acad Sci USA 89:8779–8793

    Google Scholar 

  • White KL, Fox MS (1974) On the molecular basis of high negative interference. Proc Nat Acad Sci USA 71:1544–1548

    Google Scholar 

  • Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM (1990) Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of single 8-hydroxyguanine (7-hydro-8oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29:7024–7032

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Devoret

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai-Wu, JJ., Lu, AL. Escherichia coli mutY-dependent mismatch repair involves DNA polymerase I and a short repair tract. Molec. Gen. Genet. 244, 444–450 (1994). https://doi.org/10.1007/BF00286698

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286698

Key words

Navigation