Skip to main content
Log in

The genetics of the repair of 5-azacytidine-mediated DNA damage in the fission yeastSchizosaccharomyces pombe

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

We have recently demonstrated thatSchizosaccharomyces pombe cells treated with the nucleoside analogue 5-azacytidine (5-azaC) require previously characterised G2 checkpoint mechanisms for survival. Here we present a survey of known DNA repair mutations which defines those genes required for survival in the presence of 5-azaC. Using a combination of single-mutant and epistasis analyses we find that the excision, mismatch and recombinational repair pathways are all required in some degree for the repair of 5-azaC-mediated DNA damage. There are distinct differences in the epistatic interactions of several of the repair mutations with respect to 5-azaC-mediated DNA damage relative to UV-mediated DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Khodairy F, Fotou E, Sheldrick KS, Griffiths DJF, Lehmann AR, Carr AM (1994) Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol Biol Cell 5:147–160

    Google Scholar 

  • Bardwell L, Cooper AJ, Friedberg EC (1992) Stable and specific association between the yeast recombination and DNA repair proteins Rad1 and Rad10 in vitro. Mol Cell Biol 12:3041–3049

    Google Scholar 

  • Bardwell JA, Bardwell L, Tomkinson AE, Friedberg EC (1994) Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science 265:2082–2085

    Google Scholar 

  • Bhagwat AS, Roberts RJ (1987) Genetic analysis of the 5-azacytidine sensitivity ofE. coli K-12. J Bacteriol 169:1537–1546

    Google Scholar 

  • Birkenbihl RR, Subramani S (1992) Cloning and characterization ofrad21, an essential gene ofSchizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res 20:6605–6611

    Google Scholar 

  • Birnboim HC, Nasim A (1975) Excision of pyrimidine dimers by several UV-sensitive mutants ofS. pombe. Mol Gen Genet 136:1–8

    Google Scholar 

  • Carr AM, Hoekstra MF (1995) The cellular response to DNA damage. Trends Cell Biol 5:32–40

    Google Scholar 

  • Carr AM, Sheldrick KS, Murray JM, Al-Harithy R, Watts FZ, Lehmann AR (1993) Evolutionary conservation of excision repair inSchizosaccharomyces pombe: evidence for a family of sequences related to theSaccharomyces cerevisiae RAD2 gene. Nucleic Acids Res 21:1345–1349

    Google Scholar 

  • Carr AM, Schmidt H, Kirchhoff S, Muriel WJ, Sheldrick KS, Griffiths DJ, Nur Basmaciogu C, Subramani S, Clegg M, Nasim A, Lehmann AR (1994) Therad16 gene ofSchizosaccharomyces pombe: a homolog of theRAD1 gene ofSaccharomyces cerevisiae. Mol Cell Biol 14:2029–2040

    Google Scholar 

  • Christman JK, Schneiderman N, Acs G (1985) Formation of highly stable complexes between 5-azcytosine-substituted DNA and specific non-histone nuclear proteins. J Biol Chem 260:4059–4068

    Google Scholar 

  • Doe CL, Murray JM, Shayeghi M, Hoskins M, Lehmann AR, Carr AM, Watts FZ (1993) Cloning and characterisation of theSchizosaccharomyces pombe rad8 gene, a member of the SNF2 helicase family. Nucleic Acids Res 21:5964–5971

    Google Scholar 

  • Drummond JT, Guo-Min L, Longley MJ, Modrich P (1995) Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumour cells. Science 268:1909–1912

    Google Scholar 

  • Fleck O, Holger M, Heim L (1992) Theswi4 + gene ofSchizosaccharomyces pombe encodes a homologue of mismatch repair enzymes. Nucleic Acids Res 20:2271–2278

    Google Scholar 

  • Freyer GA, Davey S, Ferrer JV, Martin AM, Beach D, Doetsch PW (1995) An alternative eukaryotic excision repair pathway. Mol Cell Biol 51:4572–4577

    Google Scholar 

  • Gutz H, Schmidt H (1985) Switching genes inSchizosaccharomyces pombe. Curr Genet 9:325–331

    Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974)Schizosaccharomyces pombe. In: King RC (ed) Handbook of Genetics, vol 1. Plenum Press, New York, pp 395–446

    Google Scholar 

  • Habraken Y, Sung P, Prakash L, Prakash S (1993) Yeast excision repair generad2 encodes a single-stranded DNA endonuclease. Nature 366:365–368

    Google Scholar 

  • Harrington JJ, Lieber M (1994a) Functional domains withinFEN-1 andRAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair. Genes Dev 8:1344–1355

    Google Scholar 

  • Harrington JJ, Lieber M (1994b) The characterisation of a mammalian DNA structure-specific endonuclease. EMBO J 13:1235–1246

    Google Scholar 

  • Harrington JJ, Lieber M (1995) DNA structural elements required for FEN-1 binding. J Biol Chem 270:4503–4508

    Google Scholar 

  • Hoeijmakers JHJ (1993) Nucleotide excision repair II: from yeast to mammals. Trends Genet 9:211–217

    Google Scholar 

  • Hori TA (1983) Induction of chromosome decondensation, sister-chromatid exchanges and endoreduplications by 5-azacytidine, an inhibitor of DNA methylation. Mutat Res 121:47–52

    Google Scholar 

  • Ivanov EL, Haber JE (1995)RAD1 andRAD10, but not other excision repair genes, are required for double-strand break-induced recombination ofSaccharomyces cerevisiae. Mol Cell Biol 15:2245–2251

    Google Scholar 

  • Jütterman R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 91:11797–11801

    Google Scholar 

  • Lal D, Som S, Friedman S (1988) Survival and mutagenic effects of 5-azacytidine inEscherichia coli. Mutat Res 193:229–236

    Google Scholar 

  • Lehmann AR, Carr AM, Watts FZ, Murray JM (1991) DNA repair in the fission yeast.Schizosaccharomyces pombe. Mutat Res 250:205–210

    Google Scholar 

  • Lehmann AR, Walicka M, Griffiths DJF, Murray JM, Watts FZ, McCready S, Carr AM (1995) Therad18 gene ofSchizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol Cell Biol 15:7067–7080

    Google Scholar 

  • McCready S, Carr AM, Lehmann AR (1993) Repair of cyclobutane pyrimidine dimers and 6-4 photoproducts in the fission yeastSchizosaccharomyces pombe. Mol Microbiol 10:885–890

    Google Scholar 

  • Modrich P (1994) Mismatch repair, genomic instability, and cancer. Science 266:1959–1960

    Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeastSchizosaccharomyces pombe. Methods Enzymol 94:795–823

    Google Scholar 

  • Muris DFR, Vreeken K, Carr AM, Broughton BC, Lehmann AR, Lohman PHM, Pastink A (1993) Cloning theRAD51 homologue ofSchizosaccharomyces pombe. Nucleic Acids Res 21:4586–4591

    Google Scholar 

  • Murray JM, Doe CL, Schenk P, Carr AM, Lehmann AR, Watts FZ (1992) Cloning and characterization of theS. pombe rad15 gene, a homologue to theS. cerevisiae RAD3 and the humanERCC2 genes. Nucleic Acids Res 20:2673–2678

    Google Scholar 

  • Murray JM, Tavassoli M, Al-Harithy R, Sheldrick KS, Lehmann AR, Carr AM, Watts FZ (1994) Structural and functional conservation of the human homolog of theSchizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage. Mol Cell Biol 14:4878–4888

    Google Scholar 

  • Nasim A, Smith BP (1975) Genetic control of radiation sensitivity inSchizosacharomyces pombe. Genetics 79:573–582

    Google Scholar 

  • Ostermann K, Lorentz A, Schmidt H (1993) The fission yeastrad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog toRAD52 ofSaccharomyces cerevisiae. Nucleic Acids Res 21:5940–5944

    Google Scholar 

  • Palombo F, Gallinari P, Iaccarino I, Lettieri T, Hughes M, D'Arrigo A, Truong O, Hsuan JJ, Jirincy J (1995) GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 68:1912–1914

    Google Scholar 

  • Papadopoulos N, Nicolaides NC, Liu B, Parsons R, Lengauer C, Palombo F, D'Arrigo A, Markowitz S, Wilson JKV, Kinzler KW, Jirincy J, Vogelstein B (1995) Mutations ofGTBP in genetically unstable cells. Science 68:1915–1917

    Google Scholar 

  • Parrow VC, Alestrom P, Gautvik KM (1989) 5-Azacytidine-induced alterations in GH12C1 cells: effects on cellular morphology, chromosome structure, DNA and protein synthesis. J Cell Sci 93:533–543

    Google Scholar 

  • Phipps J, Nasim A, Miller DR (1985) Recovery, repair and mutagenesis inSchizosaccharomyces pombe. Adv Gene 23:1–72

    Google Scholar 

  • Pinto A, Zagonel V (1993) 5-Aza-2′-deoxycytidine (Decitabine) and 5-azacytidine in the treatment of acute myeloid leukemias and mylodysplastic syndromes: past, present and future trends. Leukamia 7:Suppl. Monograph 1, 51–60

    Google Scholar 

  • Prado F, Aguilera A (1995) Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for theRAD1, RAD10, andRAD52 genes. Genetics 139:109–123

    Google Scholar 

  • Reagan MS, Pittenger C, Siede W, Friedberg EC (1995) Characterisation of a mutant strain ofSaccharomyces cerevisiae with a deletion of theRAD27 gene, a structural homolog of theRAD2 nucleotide excision repair gene. J Bacteriol 177:364–371

    Google Scholar 

  • Rödel C, Kirchhoff S, Schmidt H (1992) The protein sequence and some intron positions are conserved between the switching geneswi10 ofSchizosaccharomyces pombe and the human excision repair geneERCC1. Nucleic Acids Res 20:6347–6353

    Google Scholar 

  • Santi DV, Norment A, Garrett CE (1984) Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci USA 81:6993–6997

    Google Scholar 

  • Schlake C, Ostermann K, Schmidt H, Gutz H (1993) Analysis of DNA repair pathways ofSchizosaccharomyces pombe by means ofswi-rad double mutants. Mutat Res 294:59–67

    Google Scholar 

  • Schmidt H, Kapitza-Fecke P, Stephen ER, Gutz H (1989) Someswi genes ofSchizosaccharomyces pombe also have a function in the repair of radiation damage. Curr Genet 16:89–94

    Google Scholar 

  • Schiestl RH, Prakash S (1988)RAD1, an excision repair gene ofSaccharomyces cerevisiae, is also involved in recombination. Mol Cell Biol 8:3619–3626

    Google Scholar 

  • Sheldrick KS, Carr AM (1993) Feedback controls and G2 checkpoints: fission yeast as a model system. BioEssays 12:775–782

    Google Scholar 

  • Stopper H, Pechan R, Schiffman D (1992) 5-Azacytidine induces micronuclei in, and morphological transformation of Syrian hamster embryo fibroblasts in the absence of unscheduled DNA synthesis. Mutat Res 283:21–28

    Google Scholar 

  • Stopper H, Korber C, Schiffman D, Caspary WJ (1993) Cell-cycle dependent micronucleus formation and mitotic disturbances induced by 5-azacytidine in mammalian cells. Mutat Res 300:165–177

    Google Scholar 

  • Subramani S (1991) Radiation resistance inSchizosaccharomyces pombe. Molec Microbiol 5:2311–2314

    Google Scholar 

  • Sung P, Prakash L, Matson S, Prakash S (1987) RAD3 protein ofSaccharomyces cerevisiae is a DNA helicase. Proc Natl Acad Sci USA 84:8951–8955

    Google Scholar 

  • Szankasi P, Smith GR (1995) A role of exonuclease I fromS. pombe in mutation avoidance and mismatch correction. Science 267:1166–1169

    Google Scholar 

  • Taylor SM (1993) 5-Aza-2′-deoxycytidine: cell differentiation and DNA methylation. Leukemia 7:Suppl Monograph 1:3–8

    Google Scholar 

  • Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17:187–194

    Google Scholar 

  • Tomkinson AE, Bardwell AJ, Bardwell L, Tappe NJ, Friedberg EC (1993) Yeast DNA repair proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature 362:860–862

    Google Scholar 

  • Waga S, Stillman B (1994) Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replicationin vitro. Nature 369:207–212

    Google Scholar 

  • Walworth N, Davey S, Beach D (1993) Fission yeastchk1 protein kinase links therad checkpoint pathway tocdc2. Nature 363:368–371

    Google Scholar 

  • Wilkinson CRM, Bartlett R, Nurse P, Bird AP (1995) The fission yeast genepmt1 + encodes a DNA methyltransferase homologue. Nucleic Acids Res 23:203–210

    Google Scholar 

  • Zimmermann FK, Scheel I (1984) Genetic effects of 5-azacytidine inSaccharomyces cerevisiae. Mutat Res 139:21–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. J. Kilbey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegde, V., McFarlane, R.J., Taylor, E.M. et al. The genetics of the repair of 5-azacytidine-mediated DNA damage in the fission yeastSchizosaccharomyces pombe . Molec. Gen. Genet. 251, 483–492 (1996). https://doi.org/10.1007/BF02172377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172377

Key words

Navigation