Skip to main content
Log in

Axoplasmic flow of adrenaline and monoamine oxidase in amphibian sympathetic nerves

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The accumulation of both A and MAO proximal to a ligature on toad spinal nerves has been shown to occur at a slower rate than in mammals. As in mammals, there are two components of axonal transport in amphibian nerves, with the accumulation of A reaching a peak at between 4 and 7 days (cf. 2–4 days for NA in mammals), while MAO accumulation does not reach its maximum before 9 days (cf. 7 days in mammals). No accumulation occurs after sympathectomy, providing evidence for localization of MAO within amphibian sympathetic adrenergic nerves. Distal accumulation of MAO occurs in toad sympathetic nerves; this has not been reported to occur in mammalian nerves. Distal accumulation reaches a peak at 2–4 days, which suggests either a fast retrograde flow of MAO or that induction of MAO is occurring. These results are discussed in relation to differences between mammalian and amphibian sympathetic nerves and to the events occurring following ligation of these nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelakos, E. T., Glassman, P. M., Millard, R. W., King, M.: Regional distribution and subcellular localization of catecholamines in the frog heart. Comp. Biochem. Physiol.15, 313–324 (1965).

    PubMed  Google Scholar 

  • Banks, P., Mangnall, D., Mayor, D.: The re-distribution of cytochrome oxidase, noradrenaline and adenosine triphosphate in adrenergic nerves constricted at two points. J. Physiol. (Lond.)200, 745–762 (1969).

    Google Scholar 

  • Boadle, M. S., Bloom, F. E.: A method for the fine structural localization of monoamine oxidase. J. Histochem. Cytochem.17, 331–340 (1969).

    PubMed  Google Scholar 

  • Boyle, F. C., Gillespie, J. S.: Accumulation and loss of noradrenaline central to a constriction on adrenergic nerves. Europ. J. Pharmacol.12, 77–84 (1970).

    Google Scholar 

  • Dahlström, A.: Observations on the accumulation in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. (Lond.)99, 677–690 (1965).

    Google Scholar 

  • - The intraneuronal distribution of noradrenaline and the transport and life-span of amine storage granules in the sympathetic adrenergic neuron. M.D. thesis, Stockholm (1966).

  • —: Effect of cholchicine on transport of amine storage granules in sympathetic nerves of rat. Europ. J. Pharmacol.5, 111–113 (1968).

    Google Scholar 

  • —, Häggendal, J.: Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta physiol. scand.67, 278–288 (1966).

    PubMed  Google Scholar 

  • —: Studies on the transport and life-span of amine storage granules in the adrenergic neuron system of the rabbit sciatic nerve. Acta physiol. scand.69, 153–157. (1967).

    PubMed  Google Scholar 

  • —, Jonason, J.: Dopa-decarboxylase activity in sciatic nerves of the rat after constriction. Europ. J. Pharmacol.4, 377–383 (1968).

    Google Scholar 

  • Dahlström, A., Jonason, J., Norberg, K.- Å.: Monoamine oxidase activity in rat sciatic nerves after constriction. Europ. J. Pharmacol.6, 248–254 (1969).

    Google Scholar 

  • Euler, U.S. von: Noradrenaline. Springfield, Illinois (1956).

  • Falck, B., Owman, Ch.: A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monoamines. Acta Univ. Lund. Sect II, No 7, 1–23 (1965).

    Google Scholar 

  • Geffen, L. B., Livett, B. G.: Origin, functions and fate of synaptic vesicles in sympathetic neurons. Pharmacol. Rev.51, 98–157 (1971).

    Google Scholar 

  • —, Rush, R. A.: Immunohistochemical localization of protein components of catecholamine storage vesicles. J. Physiol. (Lond.)204, 593–605 (1969).

    Google Scholar 

  • —, Ostberg, A.: Distribution of granular vesicles in normal and constricted sympathetic neurones. J. Physiol. (Lond.)204, 583–592 (1969).

    Google Scholar 

  • Glenner, G. G., Burtner, H. J., Brown, G. W.: Histochemical demonstration of monoamine oxidase activity of tetrazolium salts. J. Histochem. Cytochem.5, 591–600 (1957).

    PubMed  Google Scholar 

  • Kapeller, K., Mayor, D.: The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc. roy, Soc. B167, 282–292 (1967).

    Google Scholar 

  • —: The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc. roy. Soc. B172, 39–52 (1969a).

    Google Scholar 

  • —: An electron microscope study of the early changes distal to a constriction in sympathetic nerves. Proc. roy. Soc. B172, 53–64 (1969b).

    Google Scholar 

  • Karlsson, J.-O., Sjöstrand, J.: Transport of labelled proteins in the optic nerve and tract of the rabbit. Brain Res.11, 431–439 (1968).

    PubMed  Google Scholar 

  • Kroon, A. M.: Protein synthesis in mitochondria. II. A comparison of mitochondria from liver and heart with special reference to the role of oxidative phosphorylation. Biochim. biophys. Acta (Amst.)91, 145–154 (1964).

    Google Scholar 

  • Laduron, P., Belpaire, F.: Transport of noradrenaline and dopamine-β-hydroxylase in sympathetic nerves. Life Sci.7, 1–7 (1968a).

    Google Scholar 

  • —: Evidence for an extragranular localization of tyrosine hydroxylase. Nature (Lond.)217, 1155–1156 (1968b).

    Google Scholar 

  • Lasek, R.: Axoplasmic transport in cat dorsal root ganglion cells as studied with3H-l-leucine. Brain Res.7, 360–377 (1968).

    PubMed  Google Scholar 

  • Lever, J. D., Spriggs, T. L. B., Graham, J. D. P., Ivens, C.: The distributions of3H-noradrenaline and acetylcholinesterase (AChE) proximal to constrictions of hypogastric and splenic nerves in the cat. J. Anat. (Lond.),107, 407–419 (1970).

    Google Scholar 

  • Livett, B. G., Geffen, L. B., Austin, L.: Axoplasmic transport of14C-noradrenaline and protein in splenic nerves. Nature (Lond.).217, 278–279 (1968).

    Google Scholar 

  • Lubińska, L.: Axoplasmic streaming in regenerating and in normal nerve fibres. Progr. Brain Res.13, 1–71 (1964).

    Google Scholar 

  • Malmfors, T., Sachs, Ch.: Direct studies on the disappearance of the transmitter and changes in the uptake-storage mechanisms of degenerating adrenergic nerves. Acta physiol. scand.64, 211–223 (1965).

    PubMed  Google Scholar 

  • Mayor, D., Kapeller, K.: Fluorescence microscopy and electronmicroscopy of adrenergic nerves after constriction at two points. J. roy. micr. Soc.87, 277–294 (1967).

    PubMed  Google Scholar 

  • McLean, J. R.: Axoplasmic flow of monoamine oxidase in amphibian sympathetic nerves. Aust. J. exp. Biol. med. Sci.47, 32P (1969).

    Google Scholar 

  • —, Burnstock, G.: Histochemical localisation of catecholamines in the urinary bladder of the toad (Bufo marinus). J. Histochem. Cytochem.14, 538–548 (1966).

    PubMed  Google Scholar 

  • —: Innervation of the lungs of the toad (Bufo marinus)—II. Fluorescence histochemistry of catecholamines. Comp. Biochem. Physiol.22, 767–773 (1967).

    PubMed  Google Scholar 

  • Pearse, A. G. E.: Histochemistry—theoretical and applied. London: Churchill 1960.

    Google Scholar 

  • Rabinowitz, M., Sinclair, J., de Salle, L., Haselkorn, R., Swift, N. H.: Isolation of deoxyribonucleic acid from mitochondria of chick embryo heart and liver. Proc. nat. Acad. Sci. (Wash.)53, 1126–1133 (1965).

    Google Scholar 

  • Rodríguez Echandía, E. L., Zamora, A., Piezzi, R. S.: Organelle transport in constricted nerve fibers of the toadBufo arenarum Hensel. Z. Zellforsch.104, 419–428 (1970).

    PubMed  Google Scholar 

  • Schnaitman, C., Greenawalt, J. W.: Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J. Cell Biol.38, 158–175 (1968).

    PubMed  Google Scholar 

  • Sjöstrand, J.: Fast and slow components of axoplasmic transport in the hypoglossal and vagus nerves of the rabbit. Brain Res.18, 461–467 (1970).

    PubMed  Google Scholar 

  • —, Frizell, M., Hasselgren, P.-O.: Effects of colchicine on axonal transport in peripheral nerves. J. Neurochem.17, 1563–1570 (1970).

    PubMed  Google Scholar 

  • Weiss, P., Hiscoe, H. B.: Experiments on the mechanism of nerve growth. J. exp. Zool.107, 315–395 (1948).

    Google Scholar 

  • Pillai, A.: Convection and fate of mitochondria in nerve fibres: axonal flow as vehicle. Proc. nat. Acad. Sci. (Wash.)54, 48–56 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank Judy Lenk, Vivienne Einhorn and Barbara Peachey for their assistance with the initial MAO histochemical work. This work was supported by grants from the National Heart Foundation of Australia and the Australian Research Grants Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLean, J.R., Burnstock, G. Axoplasmic flow of adrenaline and monoamine oxidase in amphibian sympathetic nerves. Z. Zellforsch. 124, 44–56 (1972). https://doi.org/10.1007/BF00981940

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00981940

Key words

Navigation