Skip to main content
Log in

Development of muscle spindles deprived of fusimotor innervation

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Muscle spindles of limb muscles were deefferented in neonatal rats by sectioning ventral roots or by removal of the lumbosacral spinal cord.

Ten to 56 days after the operation, muscle spindles were examined in the medial gastrocnemius, extensor digitorum longus and soleus muscles. The differentiation of muscle spindles was not affected by deefferentation. The number of spindles in the investigated muscles was not reduced. Intrafusal fibres increased in number from two at birth to four per spindle on the average, as in normal muscles. The characteristic ultrastructural distinctions of nuclear bag and nuclear chain fibres developed as under normal conditions. However, intrafusal fibres atrophied slowly after fusimotor denervation, their polar zones becoming reduced in diameter by about 25% in comparison with control fibre diameters. Spindle capsules, on the other hand, increased in size and attained diameters comparable with normal spindles, appearing even somewhat distended.

As intrafusal fibres degenerate after complete denervation at birth (Zelená, 1957), but differentiate in the absence of fusimotor innervation, it can be concluded that sensory nerve terminals induce and support their development. It is assumed that the morphogenetic influence of sensory terminals is mediated by release and uptake of a trophic substance at the synaptic junction. The occurrence of light and dense core vesicles in the sensory terminals and of coated invaginations and vesicles at both the axonal and plasma membrane speak in favour of such a possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adal, M.N.: The fine structure of the sensory region of cat muscle spindles. J. Ultrastruct. Res. 26, 332–354 (1969)

    Google Scholar 

  • Banker, B.Q., Girvin, J.P.: The ultrastructural features of the mammalian muscle spindle. J. Neuropath. exp. Neurol. 30, 155–195 (1971)

    Google Scholar 

  • Banker, B.Q., Girvin, J.P.: The ultrastructural features of the normal and de-efferented mammalian muscle spindles. In: Research in muscle development and the muscle spindle (B.Q. Banker, R.J. Przybylski, J.P. Van der Meulen and M. Victor, eds.), International Congress Series No 240, p. 257–296. Amsterdam: Excerpta Medica 1972

    Google Scholar 

  • Banker, B.Q., Przybylski, R.J., Van der Meulen, J.P., Victor, M., eds.: Research in muscle development and the muscle spindle. International Congress Series No. 240, p. 1–474. Amsterdam: Excerpta Medica 1972

    Google Scholar 

  • Barker, D.: The innervation of the muscle spindle. Quart. J. micr. Sci. 89, 143–186 (1948)

    Google Scholar 

  • Barker, D.: The structure and distribution of muscle receptors. In: Symposium on muscle receptors (D. Barker, ed.), p. 227–240. Hong Kong: Hong Kong University Press 1962

    Google Scholar 

  • Barker, D., ed.: Symposium on Muscle Receptors, p. 1–292. Hong Kong: Hong Kong University Press 1962

    Google Scholar 

  • Barker, D., Harker, D., Stacey, M.J., Smith, C.R.: Fusimotor innervation. In: Research in muscle development and the muscle spindle (B.Q. Banker, R.J. Przybylski, J.P. Van der Meulen and M. Victor, eds.), International Congress Series No. 240, p. 227–250. Amsterdam: Excerpta Medica 1972

    Google Scholar 

  • Barker, D., Milburn, A.: Increase in number of intrafusal muscle fibres during the development of muscle spindles in the rat. J. Physiol. (Lond.) 222, 159–160P (1972)

    Google Scholar 

  • Barker, D., Stacey, M.J.: Rabbit intrafusal muscle fibres. J. Physiol. (Lond.) 210, 70–72P (1970)

    Google Scholar 

  • Boyd, I.A.: The diameter and distribution of the nuclear bag and nuclear chain muscle fibres in the muscle spindles of the cat. J. Physiol. (Lond.) 153, 23–24P (1960)

    Google Scholar 

  • Boyd, I.A.: The structure and innervation of the nuclear bag muscle fibre system and the nuclear chain muscle fibre system in mammalian muscle spindles. Phil. Trans. B 245, 81–136 (1962)

    Google Scholar 

  • Bueker, E.D., Meyers, Ch.E.: The maturity of peripheral nerves at the time of injury as a factor in nerve regeneration. Anat. Rec. 109, 723–744 (1951)

    Google Scholar 

  • Bunge, R.P., Bunge, M.B., Peterson, E.R.: An electron microscope study of cultured rat spinal cord. J. Cell Biol. 24, 163–191 (1965)

    Google Scholar 

  • Chin, N.K., Cope, M., Pang, M.: Number and distribution of spindle capsules in seven hindlimb muscles of the cat. In: Symposium on Muscle Receptors (D. Barker, ed.), p. 241–248. Hong Kong: Hong Kong University Press 1962

    Google Scholar 

  • Clérot, J.C.: Mise en évidence par cytochimie ultrastructurale de l'émission de protéines par le noyau d'auxocytes de batraciens. J. Microscopie 7, 973–992 (1968)

    Google Scholar 

  • Cooper, S.: Muscle spindles and other muscle receptors. In: Structure and function of muscle (G.H. Bourne, ed.), vol. 1, p. 381–420. New York: Academic Press 1960

    Google Scholar 

  • Cooper, S., Daniel, P.M.: Muscle spindles in man; their morphology in the lumbricals and the deep muscles of the neck. Brain 86, 563–586 (1963)

    Google Scholar 

  • Corvaja, N., Marinozzi, V., Pompeiano, O.: Muscle spindles in the lumbrical muscle of the adult cat. Electron microscopic observation and functional considerations. Arch. ital. Biol. 107, 365–543 (1969)

    Google Scholar 

  • Dhainaut, A.: Etude en microscopie électronique et par autoradiographie à haute résolution des extrusions nucléaires au cours de l'ovogénèse de Nereis pelagica (Annélide polychète). J. Microscopie 9, 99–118 (1970)

    Google Scholar 

  • Düring, M. v., Andres, K.H.: Zur Feinstruktur der Muskelspindel von Mammalia. Anat. Anz. 124, 566–573 (1969)

    Google Scholar 

  • Engel, W.K.: The essentiality of histo- and cytochemical studies of skeletal muscle in the investigation of neuromuscular disease. Neurology (Minneap.) 12, 778–794 (1962)

    Google Scholar 

  • Fukami, Y.: Tonic and phasic muscle spindles in snake. J. Neurophysiol. 33, 28–45 (1970)

    Google Scholar 

  • Fukami, Y., Hunt, C.C.: Structure of snake muscle spindles. J. Neurophysiol. 33, 9–27 (1970)

    Google Scholar 

  • Gruner, J.E.: La structure fine du fuseau neuromusculaire humain. Rev. neurol. 104, 490–507 (1961)

    Google Scholar 

  • Hennig, G.: Die Nervenendigungen der Rattenmuskelspindel im elektronen- und phasenkontrastmikroskopischen Bild. Z. Zellforsch. 96, 275–294 (1969)

    Google Scholar 

  • Hník, P.: Increased sensory outflow from the de-efferented muscles. Physiol. bohemoslov. 13, 405–410 (1964)

    Google Scholar 

  • Hník, P.: The increased response of chronically de-efferented rat muscle spindles to stretch. Brain Res. 21, 448–451 (1970)

    Google Scholar 

  • Hník, P., Lessler, M.J.: Changes in muscle spindle activity of the chronically de-efferented gastrocnemius of the rat. Pflügers Arch. 341, 155–170 (1973)

    Google Scholar 

  • Hník, P., Zelená, J.: Atypical spindles in reinnervated rat muscles. J. Embryol. exp. Morph. 9, 456–467 (1961)

    Google Scholar 

  • Landon, D.N.: Electron microscopy of muscle spindles. In: Control and innervation of skeletal muscle (B.L. Andrew, ed.), p. 96–111. Dundee, Scotland: D.C. Thomson and Co., Ltd. 1966

    Google Scholar 

  • Landon, D.N.: The fine structure of the equatorial regions of developing muscle spindles in the rat. J. Neurocytol. 1, 189–210 (1972)

    Google Scholar 

  • Le Beux, Y.J.: An ultrastructural study of the neurosecretory cells of the medial vascular prechiasmatic gland, the preoptic recess and the anterior part of the suprachiasmatic area. I. Cytoplasmic inclusions resembling nucleoli. Z. Zellforsch. 114, 404–440 (1971)

    Google Scholar 

  • MacDonald, R.D., Engel, A.G.: The cytoplasmic body: another structural anomaly of the Z disk. Arch. Neurol. 14, 99–107 (1969)

    Google Scholar 

  • Marchand, E.R., Eldred, E.: Postnatal increase of intrafusal fibres in the rat muscle spindle. Exp. Neurol. 25, 655–676 (1969)

    Google Scholar 

  • Matthews, P.B.C.: Muscle spindles and their motor control. Physiol. Rev. 44, 219–288 (1964)

    Google Scholar 

  • Matthews, P.B.C.: Mammalian muscle receptors and their central actions, p. 1–630. London: Eduard Arnold, Ltd. 1972

    Google Scholar 

  • Mayr, R.: Zwei elektronenmikroskopisch unterscheidbare Formen sekundärer sensorischer Endigungen in einer Muskelspindel der Ratte. Z. Zellforsch. 110, 97–107 (1970)

    Google Scholar 

  • Merrillees, N.C.R.: The fine structure of muscle spindles in the lumbrical muscles of the rat. J. biophys. biochem. Cytol. 7, 725–742 (1960)

    Google Scholar 

  • Milburn, A.: The early development of muscle spindles in the rat. J. Cell Sci. 12, 175–195 (1973)

    Google Scholar 

  • Nakashima, N., Tamura, Z., Okamoto, S., Goto, H.: Inclusion bodies in a human neuromuscular disorder. Arch. Neurol. 22, 270–278 (1970)

    Google Scholar 

  • Odor, D. L., Patel, A. N., Pearce, L. A.: Familiar hypokalemic periodic paralysis with permanent myopathy. J. Neuropath. exp. Neurol. 26, 98–114 (1967)

    Google Scholar 

  • Olmstead, J.M.D.: The results of cutting the seventh cranial nerve in Ameiurus nebulosus. J. exp. Zool. 31, 369–401 (1920)

    Google Scholar 

  • Ovalle, W.K.: Fine structure of rat intrafusal muscle fibres. The equatorial region. J. Cell Biol. 52, 382–396 (1972)

    Google Scholar 

  • Parker, G.H.: On the trophic impulse, so-called, its rate and nature. Amer. Naturalist. 66, 147–158 (1932)

    Google Scholar 

  • Rumpelt, H.-J., Schmalbruch, H.: Zur Morphologie der Bauelemente von Muskelspindeln bei Mensch und Ratte. Z. Zellforsch. 102, 601–630 (1969)

    Google Scholar 

  • Scalzi, M.A., Price, H.M.: The arrangement and sensory innervation of the intrafusal fibres in the feline muscle spindle. J. Ultrastruct. Res. 36, 375–390 (1971)

    Google Scholar 

  • Shimizu, N., Ishii, S.: Electron-microscopic observations on nucleolar extrusion in nerve cells of the rat hypothalamus. Z. Zellforsch. 67, 367–372 (1965)

    Google Scholar 

  • Smith, A. D.: Summing up: Some implications of the neuron as a secreting cell. Phil. Trans. B 261, 423–437 (1971)

    Google Scholar 

  • Smith, R.S., Ovalle, W.K.: Structure and function of intrafusal muscle fibres. In: Muscle biology (R.G. Cassens ed.), vol. 1, p. 147–227. New York: Marcel Dekker, Inc. 1972

    Google Scholar 

  • Swett, J.E., Eldred, E.: Comparison in structure of stretch receptors in medial gastrocnemius and soleus muscles of the cat. Anat. Rec. 137, 461–473 (1960)

    Google Scholar 

  • Thomson, J. D.: Mechanical characteristics of skeletal muscle undergoing atrophy of denervation. Amer. J. Phys. Med. 34, 606–511 (1955)

    Google Scholar 

  • Tower, S.: Atrophy and degeneration in the muscle spindle. Brain 55, 77–89 (1932)

    Google Scholar 

  • Uehara, Y.: Unique sensory endings in rat muscle spindles. Z. Zellforsch. 136, 511–520 (1973)

    Google Scholar 

  • Zelená, J.: Morphogenetic influence of innervation on the ontogenetic development of muscle spindles. J. Embryol. exp. Morph. 5, 283–292 (1957)

    Google Scholar 

  • Zelená, J.: Effect of innervation on the development of skeletal muscle. (In Czech, with English and Russian summary), p. 1–102. Prague: Státní zdravotnické nakladatelství, 1959

    Google Scholar 

  • Zelená, J.: The effects of denervation on muscle development. In: The denervated muscle (E. Gutmann, ed.), p. 103–126, Prague: Publishing House of the Czechoslovak Academy of Sciences 1962

    Google Scholar 

  • Zelená, J.: Development of muscle receptors after tenotomy. Physiol. bohemoslov. 12, 30–36 (1963)

    Google Scholar 

  • Zelená, J.: Development, degeneration and regeneration of receptor organs. In: Mechanisms of neural regeneration (M. Singer and J.P. Schadé, eds.), Progress in brain research, vol. 13, p. 175–213. Amsterdam: Elsevier 1964

    Google Scholar 

  • Zelená, J.: The influence of fusimotor innervation upon the development of muscle spindles. Čs. Fysiol. 14, 377–378 (1965)

    Google Scholar 

  • Zelená, J., Hník, P.: Muscle atrophy in young rats. Physiol. bohemoslov. 6, 193–199 (1957)

    Google Scholar 

  • Zelená, J., Hník, P.: Effect of innervation on the development of muscle receptors. In: The effect of use and disuse on neuromuscular functions (E. Gutmann and P. Hník, eds.), p. 95–105. Prague: Publishing House of the Czechoslovak Academy of Sciences 1963

    Google Scholar 

  • Zelená, J., Sobotková, M.: Absence of muscle spindles in regenerated muscles of the rat. Physiol. bohemoslov. 20, 433–439 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank Mrs. M. Sobotková, Dr. Z. Lišková, Mr. H. Kunz and Ing. M. Doubek for their skillful technical assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelená, J., Soukup, T. Development of muscle spindles deprived of fusimotor innervation. Z.Zellforsch 144, 435–452 (1973). https://doi.org/10.1007/BF00307586

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307586

Key words

Navigation