Skip to main content
Log in

Functional difference between “classical” neurosecretory material and vasopressin-like substances of the outer layer of the median eminence

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

In female Wistar rats the influence of adrenalectomy and NaCl administration on the amount of “classical” neurosecretory material (cNSM) in the supraoptico-hypophysial system and on vasopressin-like substance-containing granules (vlG) in the outer layer of the median eminence has been studied.

In conjunction with appropriate sodium replacement, adrenalectomy induces an increase in the amount of vlG but does not alter the amount of cNSM.

Administration of hypertonic saline diminishes cNSM but has no or only little influence on the amount of vlG.

From the findings it is concluded that cNSM and vlG, in spite of their identical histochemical and immunohistochemical properties, have different functions. The functional significance of the vlG is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams CWM, Sloper JC (1956) The hypophalamic elaboration of posterior pituitary principles in man, the rat and dog. Histochemical evidence derived from a performic acid-alcian blue reaction for cystine. J Endocrinol 13:221–228

    Google Scholar 

  • Agus ZS, Goldberg M (1971) Role of antidiuretic hormone in the abnormal water diuresis of anterior hypopituitarism in man. J Clin Invest 50:1478–1489

    Google Scholar 

  • Ahmed ABJ, George BC, Gonzales-Auvert C, Dingman JF (1967) Increased plasma arginine vasopressin in clinical adrenocortical insufficiency and its inhibition by glucosteroids. J Clin Invest 46:111–123

    Google Scholar 

  • Antunes JL, Carmel PW, Zimmerman EA (1977) Projections from the paraventricular nucleus to the zona externa of the median eminence of the Rhesus Monkey: An immunohistochemical study. Brain Res 137:1–10

    Google Scholar 

  • Arimura A, Saito T, Bowers CY, Schally AV (1967) Pituitary-adrenal-activation in rats with hereditary hypothalamic diabetes insipidus. Acta Endocrinol 54:155–165

    Google Scholar 

  • Arko H, Kivalo E, Rinne UK (1963) Hypothalamo-neurohypophysial neurosecretion after the extirpation of various endocrine glands. Acta Endocrinol (Kbh) 42:293–299

    Google Scholar 

  • Aspeslagh MR, Vandesande F, Dierickx K (1976) Electron-microscopic immunocytochemical demonstration of separate neurophysin-vasopressinergic and neurophysin-oxytocinergic nerve fibres in the neural lobe of the rat hypophysis. Cell Tissue Res 171:31–37

    Google Scholar 

  • Balment RJ, Chester Jones I, Henderson IW, Oliver JA (1976) Effects of adrenalectomy and hypophysectomy on water and electrolyte metabolism in male and female rats with inherited hypothalamic diabetes insipidus (Brattleboro strain). J Endocrinol 71:193–217

    Google Scholar 

  • Bargmann W (1949) Über die neurosekretorische Verknüpfung von Hypothalamus und Neurohypophyse. Z Zellforsch 34:610–634

    Google Scholar 

  • Bargmann W (1966) Neurosecretion. Int Rev Cytol 19:183–201

    Google Scholar 

  • Bargmann W (1968) Neurohypophysis. Structure and function. In: Berde B (ed), O. Eichler, A. Farah, H. Herken and A.D. Welch: Handbuch der experimentellen Pharmakologie, Vol. XXIII, Neurohypophysial hormones and similar polypeptides, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Birnie JH, Eversole WJ, Boss WR, Osborn CM, Gaunt R (1950) An antidiuretic substance in the blood of normal and adrenalectomized rats. Endocrinology 47:1–12

    Google Scholar 

  • Bock R (1967) Zur Darstellbarkeit des Neurosekretes. Anat Anz Erg Bd 120:139–145

    Google Scholar 

  • Bock R (1972) Morphometrische Untersuchungen zum histologischen Nachweis des Corticotropin-Releasing Factor im Infundibulum der Ratte. Z Anat Entwickl Gesch 137:1–19

    Google Scholar 

  • Bock R, aus der Mühlen K (1968) Beiträge zur funktionellen Morphologie der Neurohypophyse.I. Über eine “gomoripositive” Substanz in der Zona externa infundibuli beidseitig adrenalektomierter weißer Mäuse. Z Zellforsch 92:130–148

    Google Scholar 

  • Bock R, Forstner R v (1969) Beiträge zur funktioneilen Morphologie der Neurohypophyse. II. Vergleichsuntersuchung histologischer Veränderungen im Infundibulum der Ratte nach beidseitiger Adrenalektomie und nach Hypophysektomie. Z Zellforsch 94:434–440

    Google Scholar 

  • Bock R, Jurna I (1977) Ipsilateral diminution of CRF-granules after unilateral hypothalamic lesions. Cell Tissue Res 185:215–229

    Google Scholar 

  • Bock R, Salland Th, Schwabedal PE, Watkins WB (1976) Histochemical and immunohistochemical properties of the CRF-granules and other “Gomori-positive” substances of the rat. Histochemistry 46:81–105

    Google Scholar 

  • Bonjour JP, Malvin RL (1970) Stimulation of ADH release by the renin-angiotensin system. Am J Physiol 218:1555–1559

    Google Scholar 

  • Boykin J, McCool A, Robertson G, McDonald K, Schrier R (1975) Mechanism of impaired water excretion in mineralocorticoid deficient dogs. Clin Res 23:233A

    Google Scholar 

  • Brinkmann H, Bock R (1970) Quantitative Veränderungen “Gomori-positiver” Substanzen in Infundibulum und Hypophysenhinterlappen der Ratte nach Adrenalektomie und Kochsalz- oder Durstbelastung. J Neuro Visceral Relat. 32:48–64

    Google Scholar 

  • Brinkmann H, Bock R (1973) Influence of various corticoids on the augmentation of “Gomori-positive” granules in the median eminence of the rat following adrenalectomy. Naunyn-Schmiedebergs's Arch Pharmacol 280:49–62

    Google Scholar 

  • Brinkmann H, Wittkowski W, Bock R (1975) Gomori-positive elementary granules in inner and outer layer of the infundibulum. Cell Tissue Res 163:503–508

    Google Scholar 

  • Burlet A, Marchetti J, Duheille J (1974) Immunohistochemistry of vasopressin: study of the hypothalamo-neurohypophysial system of normal, dehydrated and hypophysectomized rats. In: F. Knowles and L. Vollrath ed: Neurosecretion — the final neuroendocrine pathway. Springer, Berlin Heidelberg New York, pp 24–30

    Google Scholar 

  • Cavallero C, Dova E, Rossi L (1954) Antidiuretic activity in the neurohypophysis of rats after adrenalectomy and replacement therapy. J Endocrinol 10:228–237

    Google Scholar 

  • Chambers GH (1945) Changes in the rat's posterior pituitary following sodium chloride administration. Anat Rec 92:391–399

    Google Scholar 

  • Chan LT, Wied D de, Saffran M (1969) Comparison of assays for corticotropin releasing activity. Endocrinology 84:967–973

    Google Scholar 

  • Choy VJ, Watkins WB, Bock R, Schwabedal PE (1977) Effect of fixation on the demonstration of neurophysin and “Gomori-positive” substances in neurosecretory granules of the rat hypothalamus. Histochemistry 51:327–333

    Google Scholar 

  • Davis JO (1967) The regulation of aldosterone secretion. In: Eisenstein AB ed: The adrenal cortex, London, J and A Churchill, pp 203–247

    Google Scholar 

  • Defendini R, Zimmerman EA (1978) The magnocellular neurosecretory system of the mammalian hypothalamus. In: S. Reichlin, RJ Baldessarini, JB Martin ed: The Hypothalamus, Raven Press, New-York, pp 137–152

    Google Scholar 

  • Dicker SE, Tyler Ch (1953a) The oxytocic and pressor factors of the pituitary gland of dogs, cats and human foetuses. J Physiol 119:51P

    Google Scholar 

  • Dicker SE, Tyler Ch (1953b) Vasopressor and ocytocic activities of the pituitary glands of rats, guinea-pigs and cats and of human foetuses. J Physiol 121:206–214

    Google Scholar 

  • Diepen R (1962) Der Hypothalamus. In: Handbuch der mikroskopischen Anatomie des Menschen (begründet v. W. v. Möllendorff, fortgeführt v. W. Bargmann), Bd.4, Teil 7. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Dierickx K, Vandesande F (1977) Immuno-cytochemical demonstration in the external region of the amphibian median eminence of separate vasotocinergic and mesotocinergic nerve fibres. Cell Tissue Res 177:47–56

    Google Scholar 

  • Dierickx K, Vandesande F, Mey J de (1976) Identification in the external region of the rat median eminence, of separate neurophysin-vasopressin and neurophysin-oxytocin containing nerve fibres. Cell Tissue Res 168:141–151

    Google Scholar 

  • Dingman JF, Despointes RH (1960) Adrenal steroid inhibition of vasopressin release from the neurohypophysis of normal subjects and patients with Addison's disease. J Clin Invest 39:1851–1863

    Google Scholar 

  • Doepfner W, Stürmer E, Berde B (1963) On the corticotrophin-releasing activity of synthetic neurohypophysial hormones and some related peptides. Endocrinology 72:897–902

    Google Scholar 

  • Dubé D, Leclerc R, Pelletier G (1976) Electron microscopic immunohistochemical localization of vasopressin and neurophysin in the median eminence of normal and adrenalectomized rats. Am J Anat 147:103–108

    Google Scholar 

  • Duchen LW (1962) The effects of ingestion of hypertonic saline on the pituitary gland in the rat: A morphological study of the pars intermedia and posterior lobe. J Endocrinol 25:161–168

    Google Scholar 

  • Edmonds CJ (1978) Aldosterone secretion and its clinical disorders. In: Chester Jones I, Henderson IW ed: General, comparative and clinical endocrinology of the adrenal cortex, Academic Press, London New York San Franzisko, Vol 2, pp 565–599

    Google Scholar 

  • Eichner D (1953) Über den morphologischen Ausdruck funktioneller Beziehungen zwischen Nebennierenrinde und neurosekretorischem Zwischenhirnsystem der Ratte. Z Zellforsch 38:488–508

    Google Scholar 

  • Fleischer N, Vale W (1968) Inhibition of vasopressin-induced ACTH release from the pituitary by glucocorticoids in vitro. Endocrinology 83:1232–1236

    Google Scholar 

  • Friedman SM, Sréter FA, Nakashima M, Friedman CL (1962) Adrenal cortex and neurohypophyseal deficiency in salt and water homeostasis of rats. Am J Physiol, 203:697–701

    Google Scholar 

  • Gaunt R, Chart JJ (1962) Mineralocorticoid action of adrenocortical hormones. In: Eichler O, Farah A: Handbuch der experimentellen Pharmakologie, Bd. XIV, Teil 1, The adrenocortical hormones. Their origin, chemistry, physiology, and pharmacology. Part I (Subed HW Deane), Springer, Berlin Göttingen Heidelberg, pp 514–569

    Google Scholar 

  • Gaunt R, Birnie JH, Eversole WJ (1949) Adrenal cortex and water metabolism. Physiol Rev 29:281–310

    Google Scholar 

  • Gill RJ, Gann DS, Bartter FC (1962) Restoration of water diuresis in addisonian patients by expansion of the volume of extracellular fluid. J Clin Invest 41:1078–1085

    Google Scholar 

  • Gillham B, Jones MT, Hillhouse EW, Burden J (1975) Preliminary observations on the nature of corticotrophin-releasing hormone from the rat hypothalamus in vitro. J Endocrinol 65:12p-13p

    Google Scholar 

  • Gillies G, Lowry PJ (1978) Perfused rat isolated anterior pituitary cell column as bioassay for factor(s) controlling release of adrenocorticotropin: Validation of a technique. Endocrinology 103:521–527

    Google Scholar 

  • Gillies G, Wimersma Greidanus TB van, Lowry PJ (1978) Characterization of rat stalk median eminence vasopressin and its involvement in adrenocorticotropin release. Endocrinology 103:528–534

    Google Scholar 

  • Gilman A, Goodman L (1937) The secretory response of the posterior pituitary to the need for water conservation. J Physiol 90:113–124

    Google Scholar 

  • Ginsburg M (1954) The secretion of antidiuretic hormone in response to haemorrhage and the fate of vasopressin in adrenalectomized rats. J Endocrinol 11:165–176

    Google Scholar 

  • Ginsburg M (1968) Production, release, transportation and eliminination of the neurohypophysial hormones. In: Berde B (ed) Eichler O, Farah A, Herken H, Welch AD: Handbuch der experimentellen Pharmakologie, Vol. XXIII, Neurohypophysial hormones and similar polypeptides. Springer, Berlin Heidelberg New York, pp 286–371

    Google Scholar 

  • Green HH, Harrington AR, Valtin H (1970) On the role of antidiuretic hormone in the inhibition of acute water diuresis in adrenal insufficiency and the effects of gluco- and mineralocorticoids in reversing the inhibition. J Clin Invest 49:1724–1736

    Google Scholar 

  • Groot J de (1957) Neurosecretion in experimental conditions. Anat Rec 127:201–212

    Google Scholar 

  • Haymaker W, Anderson E, Nauta WJH, eds (1969) The hypothalamus. Charles C Thomas, Springfield, Illinois, USA

    Google Scholar 

  • Hedge GA, Smelik PG (1969) The action of dexamethasone and vasopressin on hypothalamic CRF-production and release. Neuroendocrinology 4:242–253

    Google Scholar 

  • Hedge GA, Yates MB, Marcus R, Yates FE (1966) Site of action of vasopressin in causing corticotropin release. Endocrinology 79:328–340

    Google Scholar 

  • Hodges JR, Jones MT (1964) Changes in the pituitary corticotropic function in the adrenalectomized rat. J Physiol (Lond) 173:190–200

    Google Scholar 

  • Hodges JR, Vernikos J (1959) Circulating corticotropin in normal and adrenalectomized rats after stress. Acta Endocrinol (Kbh) 30:188–196

    Google Scholar 

  • Hope DB, Pickup JC (1974) Neurophysis. In: Greep RO, Astwood EB (eds) Handbook of Physiology. Sect. 7: Endocrinology. Knobil E, Sawyer WH (eds) Vol IV: The pituitary gland and its neuroendocrine control. Part I. American Physiological Society, Washington DC, USA, pp 173–189

    Google Scholar 

  • Jones CW, Pickering BT (1969) The effects of water deprivation and sodium chloride inhibition on the hormone content of the neurohypophysis of the rat. J Physiol 203:449–458

    Google Scholar 

  • Jones MT, Hillhouse EW, Burden J (1976) Effect of various putative neurotransmitters on the secretion of corticotrophin-releasing hormone from the rat hypothalamus in vitro — a model of the neurotransmitters involved. J Endocrinol 69:1–10

    Google Scholar 

  • Kaufmann W, Krause DK (eds) (1976) Central nervous control of Na+ balance — relations to the reninangiotensin system. Thieme, Stuttgart

    Google Scholar 

  • Kleemann CR, Czaczkes JW, Cutler R (1964) Mechanisms of impaired water excretion in adrenal and pituitary insufficiency.IV. Antidiuretic hormone in primary and secondary adrenal insufficiency. J Clin Invest 43:1641–1650

    Google Scholar 

  • Kobayashi Y (1974a) Quantitative and electron microscopic studies on the pars intermedia of the hypophysis. I. Dietary effects of brown rice on the kidney, adrenal and pituitary of C57 BL/6 mouse. J Electron Microsc 23:107–115

    Google Scholar 

  • Kobayashi Y (1974b) Quantitative and electron microscopic studies on the pars intermedia of the hypophysis.III. Effect of short-term administration of a sodium deficient diet on the pars intermedia of mice. Cell Tissue Res 154:321–327

    Google Scholar 

  • Kobayashi Y, Takema M (1976) A morphometric study on the pars intermedia of the hypophysis during impairment of the renin-angio-tensin-aldosterone system in sodium depleted mice. Cell Tissue Res 168:153–159

    Google Scholar 

  • Kovács K, Bachrach D, Jakobovits A, Horváth E, Korpássy B (1955) Hypothalamo-hypophyseal relations of experimentally induced changes in salt and water metabolism. Acta Morphol Acad Sci Hung 4:417–427

    Google Scholar 

  • Krisch B (1978) Altered pattern of vasopressin distribution in the hypothalamus of rats subjected to immobilization stress. Cell Tissue Res 189:267–275

    Google Scholar 

  • Lauber JK (1961) A bio-assay and histochemical study of antidiuretic hormone in adrenalectomized rats. Am J Physiol 200:898–900

    Google Scholar 

  • Leveque TF, Scharrer E (1953) Pituicytes and the origin of the antidiuretic hormone. Endocrinology 52:436–447

    Google Scholar 

  • Malandra B, Corbetta S (1953) La sostanza gomori-positiva della neuroipofisi, del ratio dopo surrenalektomia e trattamento con corticoidi surrenali e sale. Z Zellforsch 39:318–327

    Google Scholar 

  • McCaa RE, Young DB, Guyton AC, McCaa CS (1974) Evidence for a role of an unidentified pituitary factor in regulation aldosterone secretion during altered sodium balance. Circ Res 34 and 35, Suppl I:15–25

    Google Scholar 

  • McCaa RE, McCaa CS, Guyton AC (1975) Role of angiotensin II and potassium in the long-term regulating of aldosterone secretion in intact conscious dogs. Circ Res 36 and 37, Suppl I

    Google Scholar 

  • McCann SM, Antunes-Rodrigues J, Nallar R (1966) Pituitary-adrenal function in the absence of vasopressin. Endocrinology 79:1058–1064

    Google Scholar 

  • McDonald KM, Miller PD, Anderson RJ, Berl T, Schrier RW (1976) Hormonal control of renal water excretion. Kidney Int 10:38–45

    Google Scholar 

  • Mirsky IA, Paulisch G, Stein M (1954) The antidiuretic activity of the plasma of adrenalectomized, hypophysectomized and adrenalectomized-hypophysectomized rats. Endocrinology 54:1, 691–697

    Google Scholar 

  • Moses AM (1963) Adrenal-neurohypophysial relationships in the dehydrated rat. Endocrinology 73:230–236

    Google Scholar 

  • Moses AM (1965) Influence of adrenal cortex on body water distribution in rats. Am J Physiol 208:662–665

    Google Scholar 

  • Moses AM, Miller M (1974) Osmotic influences on the release of vasopressin. Handbook of Physiology. Sect 7: Greep RO, Astwood EB (eds) Endocrinology, Vol. IV: Knobil E, Sawyer WH (eds) The pituitary gland and its neuroendocrine control. Part I. American Physiological Society, Washington, DC, USA

    Google Scholar 

  • Moses AM, Miller M, Streeten DHP (1967) Quantitative influence of blood volume expansion on the osmotic threshold for vasopressin release. J Clin Endocrinol Metabol 27:655–662

    CAS  PubMed  Google Scholar 

  • Ortmann R (1951) Über experimentelle Veränderungen der Morphologie des Hypophysenzwischen-hirnsystems und die Beziehung der sog. “Gomorisubstanz” zum Adiuretin. Z Zellforsch 36:92–140

    Google Scholar 

  • Palkovits M, Jong W de, Wied D de (1974) Hypothalamic control of aldosterone production in sodium-deficient rats. Neuroendocrinology 14:297–309

    Google Scholar 

  • Palkovits M, Jong W de, Wal B van der, Wied D de (1970) Effect of adrenocorticotrophic and growth hormones on aldosterone production and plasma renin activity in chronically hypophysectomized sodium-deficient rats. J Endocrinol 47:243–250

    Google Scholar 

  • Palkovits M, Jong W de, Wal B van der, Wied D de (1971) The aldosterone secretory response to sodium restriction in chronically hypophysectomized corticotropin-maintained rats as a function of duration and amount of growth hormone treatment. J Endocrinol 50:407–411

    Google Scholar 

  • Palmore WP, Mulrow PJ (1967) Control of aldosterone secretion by the pituitary gland. Science 158:1482–1484

    Google Scholar 

  • Palmore WP, Anderson R, Mulrow PJ (1970) Role of the pituitary in controlling aldosterone production in sodium-depleted rats. Endocrinology 86:728–734

    Google Scholar 

  • Pearlmutter AE, Rapino E, Saffran M (1975) The ACTH-releasing hormone of the hypothalamus requires a co-factor. Endocrinology 97:1336–1339

    Google Scholar 

  • Pelletier G, Leclerc R, Dubé D (1976) Immunohistochemical localization of hypothalamic hormones. J Histochem Cytochem 24:864–871

    Google Scholar 

  • Pelletier G, Leclerc R, Labrie F, Puviani R (1974) Electron microscope immunohistochemical localization of neurophysin in the rat hypothalamus and pituitary. Mol Cell Endocrinol 1:157–166

    Google Scholar 

  • Peterson RP (1966) Magnocellular neurosecretory centers in the rat hypothalamus. J Comp Neurol 128:181–185

    Google Scholar 

  • Pietrzik K, Schwabedal P, Hesse Ch, Bock R (1974) Influence of panthothenic acid deficiency on the amount of CRF-granules in the rat median eminence. Anat Embryol 146:43–55

    Google Scholar 

  • Portanova R, Sayers G (1973) Isolated pituitary cells.CRF-like activity of neurohypophyseal and related polypeptides. Proc Soc Exp Biol Med 143:661–666

    Google Scholar 

  • Robertson GL (1977) The regulation of vasopressin function in health and disease. Recent Prog Horm Res 33:333–385

    Google Scholar 

  • Robertson GL, Athar S (1976) The interaction of blood osmolality and blood volume in regulating plasma vasopressin in man. J Clin Endocrinol Metabol 42:613–620

    Google Scholar 

  • Rothballer AB (1956) The neurosecretory response to stress, anaesthesia, adrenalectomy and adrenal demedullation in the rat. Acta Neuroveg (Wien) 13:179–191

    Google Scholar 

  • Sachs H, Fawcett P, Takabatake Y, Portanova R (1969) Biosynthesis and release of vasopressin and neurophysin. Recent Prog Horm Res 25:447–484

    Google Scholar 

  • Saffran M (1959) Activation of ACTH release by neurohypophysial peptides. Can J Biochem Physiol 37:319–329

    Google Scholar 

  • Schally AV, Arimura A, Kastin AJ (1973) Hypothalamic regulatory hormones. Science 179:341–350

    Google Scholar 

  • Scharrer E, Scharrer B (1954) Hormones produced by neurosecretory cells. Recent Prog Horm Res 10:183–240

    Google Scholar 

  • Schwabedal P, Bock R, Winkler C (1975) Influence of adrenalectomy, total body X-irradiation and dexamethasone on the amount of CRF-granules and “classical” neurosecretory material in the rat neurohypophysis. Anat Embryol 148:267–278

    Google Scholar 

  • Schwabedal PE, Partenheimer U, Bock R (1976) Influence of sodium chloride on the amount of CRF-granules and “classical” neurosecretory material (NSM) in the neurohypophysis of bilaterally adrenalectomized rats. Anat Embryol 149:307–313

    Google Scholar 

  • Schwabedal PE, Bock R, Watkins WB, Möhring J (1977) Influence of adrenalectomy on “Gomori-positive” substances in the hypothalamo-neurohypophysial system of rats heterozygous and homozygous for hypothalamic diabetes insipidus. Anat Embryol 151:81–89

    Google Scholar 

  • Share L (1974) Blood pressure, blood volume, and the release of vasopressin. Handbook of Physiology. Sect 7: Greep RO, Astwood EB (eds) Endocrinology. Vol IV: Knobil E, Sawyer WH (eds) The pituitary gland and its neuroendocrine control, Part I, American Physiological Society, Washington DC, USA

    Google Scholar 

  • Share L, Travis RH (1971) Interrelations between the adrenal cortex and the posterior pituitary. Fed Proc 30:1378–1382

    Google Scholar 

  • Silverman AJ, Zimmerman EA (1975) Ultrastructural immunocytochemical localization of neuro-physins and vasopressin in the median eminence and posterior pituitary of the guinea pig. Cell Tissue Res 159:291–301

    Google Scholar 

  • Sirett NE, Purves HD (1973) The assay of corticotrophin releasing factor in ACTH primed “grafted” rats. In: A Brodish and ES Redgate ed: Brain-Pituitary Adrenal Interrelationships, Karger, Basel, pp 79–98

    Google Scholar 

  • Sofroniew MV, Weindl A, Wetzstein R (1977) Immunoperoxidase staining of vasopressin in the rat median eminence following adrenalectomy and steroid substitution. Acta Endocrinol Suppl 212, p 72

    Google Scholar 

  • Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horse-radish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    Google Scholar 

  • Stillman MA, Recht LD, Rosario SL, Scif SM, Robinson AG, Zimmerman EA (1977) The effects of adrenalectomy and glucocorticoid replacement on vasopressin and vasopressin-neurophysin in the zona externa of the median eminence of the rat. Endocrinology 101:42–49

    Google Scholar 

  • Stöhr Ph A (1969) Über quantitative Veränderungen “gomoripositiver” Substanzen in Infundibulum und Hypophysenhinterlappen der Ratte nach beidseitiger Adrenalektomie. Z Zellforsch 94:425–433

    Google Scholar 

  • Stutinsky F (1950) Colloide, corps de Herring et substance Gomori positive de la neurohypophyse. Compt R Soc Biol Paris 144:1357–1360

    Google Scholar 

  • Sydnor KL, Sayers G (1954) Blood and pituitary ACTH in intact and adrenalectomized rats after stress. Endocrinology 55:621–631

    Google Scholar 

  • Takahashi S (1957) Neurosecretion in experimental conditions. III. Phase contrast microscopic observations on the hypothalamo-hypophysial neurosecretory system of the experimentally dehydrated dog. Arch Histol Jpn 12:317–322

    Google Scholar 

  • Ufferman RC, Schrier W (1972) Importance of sodium intake and mineralocorticoid hormone in the impaired water excretion in adrenal insufficiency. J Clin Invest 51:1639–1646

    Google Scholar 

  • Underwood EE (1970) Quantitative Stereology. Addison-Wesley Publishing Company. California London Don Mills Ontario

    Google Scholar 

  • Valtin H (1967) Hereditary hypothalamic diabetes insipidus in rats (Brattleboro strain).A useful experimental model. Am J Med 42:814–827

    Google Scholar 

  • Vandesande F, Dierickx K, Mey J de (1977) The origin of the vasopressinergic and oxytocinergic fibres of the external region of the median eminence of the rat hypophysis. Cell Tissue Res 180:443–452

    Google Scholar 

  • Vandesande F, Mey J de, Dierickx K (1974) Identification of neurophysin producing cells. I. The origin of the neurophysin-like substance-containing nerve fibres of the external region of the median eminence of the rat. Cell Tissue Res 151:187–200

    Google Scholar 

  • Verney EB (1947/48) The antidiuretic hormone and the factors which determine its release. Proc R Soc Series B 135:25–106

    Google Scholar 

  • Vernikos-Danellis J (1965) Effect of stress, adrenalectomy, hypophysectomy and hydrocortisone on the corticotropin-releasing activity of rat median eminence. Endocrinology 76:122–126

    Google Scholar 

  • Watkins WB (1975) Immunohistochemical demonstration of neurophysin in the hypothalamo-neurohypophysial system. Int Rev Cytol 41:241–284

    Google Scholar 

  • Watkins WB (1976) Localization of neurosecretory pathways in the hypothalamus. Prog Neurophathol 3:383–446

    Google Scholar 

  • Watkins WB, Schwabedal PE, Bock R (1974) Immunohistochemical demonstration of a CRF-associated neurophysin in the external zone of the rat median eminence. Cell Tissue Res 152:411–421

    Google Scholar 

  • Weibel ER, Elias H (eds) (1967) Quantitative methods in morphology. Springer, Berlin Heidelberg NewYork

    Google Scholar 

  • Werning C (1977) Das Renin-Angiotensin-Aldosterone-System. In: Weitzel O, Zöllner N ed, Biochemie und Klinik. Thieme, Stuttgart

    Google Scholar 

  • Wittkowski W (1973) Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie des tubero-hypophysären Systems der Ratte. Z Zellforsch 139:101–148

    Google Scholar 

  • Yasuda N, Greer MA (1976) Studies on the corticotrophin-releasing activity of vasopressin, using ACTH secretion by cultured rat adenohypophyseal cells. Endocrinology 98:936–942

    Google Scholar 

  • Yasuda N, Greer MA, Greer SE, Panton P (1978) Studies on the site of action of vasopressin in inducing adreno-corticotropin secretion. Endocrinology 103:906–927

    Google Scholar 

  • Yates FE, Russel SM, Dallmann MF, Hedge GA, McCann SM, Dhariwal APS (1971) Potentiation by vasopressin of corticotrophin release induced by corticotrophin-releasing factor. Endocrinology 98:3–15

    Google Scholar 

  • Zimmerman EA, Stillman MA, Recht LD, Antunes JL, Carmel PW (1977) Vasopressin and corticotropin-releasing factor: An axonal pathway to portal capillaries in the zona externa of the median eminence containing vasopressin and its interaction with adrenal corticoids. Ann NY Acad Sci 297:405–419

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft (Bo 392/4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, R., Detzer, K., Leicht, E. et al. Functional difference between “classical” neurosecretory material and vasopressin-like substances of the outer layer of the median eminence. Cell Tissue Res. 212, 257–277 (1980). https://doi.org/10.1007/BF00233960

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233960

Key words

Navigation