Skip to main content
Log in

Ultrastructural observations on the central innervation of the guinea-pig pineal gland

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

In the present study the central innervation of the guinea-pig pineal gland was investigated. The habenulae and the pineal stalk contain myelinated and non-myelinated nerve fibres with few dense-cored and electron-lucent vesicles. Some myelinated fibres leave the main nerve fibre bundles, lose their myelin-sheaths and terminate in the pineal gland. Although direct proof is lacking, the non-myelinated fibres appear to end near the site where the bulk of the myelinated fibres are located. Here a neuropil area exists where synapses between non-myelinated fibre elements are abundant. Neurosecretory fibres were also seen. The results support the concept of functional interrelationships between hypothalamus, epithalamus and the pineal gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bargmann W (1954) Neurosekretion und hypothalamisch-hypophysäres System. Verh Anat Ges 51:30–45

    Google Scholar 

  • Barry J (1956) Les voies extra-hypophysaires de la neurosécretion diencéphalic. Ass de Anatomistes 89:264–276

    Google Scholar 

  • Björklund A, Owman Ch, West KA (1972) Peripheral sympathetic innervation and serotonin cells in the habenular region of the rat brain. Z Zellforsch 127:570–579

    Google Scholar 

  • Buijs RM, Pévet P (1980) Vasopressin-and oxytocin-containing fibres in the pineal gland and subcommissural organ of the rat. Cell Tissue Res 205:11–17

    Google Scholar 

  • David GFX, Herbert J (1973) Experimental evidence for a synaptic connection between habenula and pineal ganglion in the ferret. Brain Res 64:327–343

    Google Scholar 

  • David GFX, Herbert J, Wright GDS (1973) The ultrastructure of the pineal ganglion in the ferret. J Anat 115:79–97

    Google Scholar 

  • Dogterom J, Snijdewint FGM, Pévet P, Buijs RM (1979) On the presence of neuropeptides in the mammalian pineal gland and subcommissural organ. Progr Brain Res 52:465–470

    Google Scholar 

  • Hartmann F (1957) Über die Innervation der Epiphysis cerebri einiger Säugetiere. Z Zellforsch 46:416–429

    Google Scholar 

  • Japha JL, Eder TJ, Goldsmith ED (1974) Morphological and histochemical features of the gerbil pineal system. Anat Rec 178:381–382

    Google Scholar 

  • Kappers Ariëns J (1960) The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z Zellforsch 52:163–215

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A-138A

    Google Scholar 

  • König A, Meyer A (1967) Tagesperiodische Schwankungen einer antidiuretischen Aktivität aus der Epiphysis cerebri ausgewachsener männlicher Ratten. Naturwissenschaften 54:93

    Google Scholar 

  • König A, Meyer A (1971) The effect of continuous illumination on the circadian rhythm of the antidiuretic activity of the rat pineal. J interdiscipl Cycle Res 2:255–262

    Google Scholar 

  • König A, Meyer A, Thieme U (1970) Die akute antidiuretische Aktivität der Epiphysis cerebri von Wistar-Ratten. Endokrinologie 55:353–358

    Google Scholar 

  • Korf HW, Wagner U (1980) Evidence for a nervous connection between the brain and the pineal organ in the guinea pig. Cell Tissue Res 209:505–510

    Google Scholar 

  • Krapp C (1978) The ependyma on the pineal of the guinea pig (Cavia cobaya). A scanning electron microscopic investigation. Anat Embryol 152:217–222

    Google Scholar 

  • Lukaszyk A, Reiter RJ (1974) Neurosecretion in the pineal gland of Macaco rhesus. Experientia 30:654–655

    Google Scholar 

  • Lukaszyk A, Reiter RJ (1975) Histological evidence for the secretion of polypeptides by the pineal gland. Am J Anat 143:451–464

    Google Scholar 

  • Matsushima S, Reiter RJ (1978) Electron microscopic observations on neuron-like cells in the ground-squirrel pineal gland. J Neural Transmis 42:223–237

    Google Scholar 

  • Milhaud M, Pappas GD (1966) The fine structure of neurons and synapses of the habenula of the cat with special reference to sub-junctional bodies. Brain Res 3:158–173

    Google Scholar 

  • Møller M (1978) Presence of a pineal nerve (nervus pinealis) in the human fetus: a light and electron microscopical study of the innervation of the pineal gland. Brain Res 154:1–12

    Google Scholar 

  • Oksche A (1965) Survey of the development and comparative morphology of the pineal organ. Progr Brain Res 10:3–29

    Google Scholar 

  • Pavel S (1979) The mechanism of action of vasotocin in the mammalian brain. Progr Brain Res 52:445–458

    Google Scholar 

  • Peterson GM, Watkins WB, Moore RY (1980) The suprachiasmatic hypothalamic nuclei of the rat. Vasopressin neurons and circadian rhythmicity. Behav Neur Biol 29:236–245

    Google Scholar 

  • Pévet P, Reinharz AC, Dogterom J (1980) Neurophysins, vasopressin and oxytocin in the bovine pineal gland. Neuroscience Letters 16:301–306

    Google Scholar 

  • Romijn HJ (1975) Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L.). III. An electron microscopic investigation of the innervation. Cell Tissue Res 157:25–51

    Google Scholar 

  • Rønnekleiv OK, Møller M (1979) Brain-pineal nervous connections in the rat: an ultrastructure study following habenular lesion. Expt Brain Res 37:551–562

    Google Scholar 

  • Rønnekleiv OK, Kelly MJ, Wuttke W (1980) Single unit recordings in the rat pineal gland: evidence for habenulo-pineal neural connections. Expt Brain Res 39:187–192

    Google Scholar 

  • Sartin JL, Brui BC, Orts RJ (1979) Neurotransmitter regulation of arginine vasotocin release from rat pineal glands in vitro. Acta Endocrinol 91:571–576

    Google Scholar 

  • Semm P, Schneider T., Vollrath L (1981a) Morphological and electrophysiological evidence for habenular influence on the guinea-pig pineal gland. J Neural Transmiss 50:247–266

    Google Scholar 

  • Semm P, Demaine C, Vollrath L (1981b) Electrical responses of pineal cells to melatonin and putative transmitters: evidence for circadian changes in sensitivity. Expt Brain Res (in press)

  • Ueck M (1979) Innervation of the vertebrate pineal. Progr Brain Res 52:45–88

    Google Scholar 

  • Vollrath L (1981) The Pineal Organ. In: Oksche A, Vollrath L (eds) Hdb mikr Anat Mensch Vol VI/7 Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wiklund L (1974) Development of serotonin-containing cells and the sympathetic innervation of the habenular region in the rat brain. A fluorescence histochemical study. Cell Tissue Res 155:231–243

    Google Scholar 

  • Wood JG (1973) The effects of niamid and reserpine on the nerve endings of the pineal gland. Z Zellforsch 45:151–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, T., Semm, P. & Vollrath, L. Ultrastructural observations on the central innervation of the guinea-pig pineal gland. Cell Tissue Res. 220, 41–49 (1981). https://doi.org/10.1007/BF00209964

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209964

Key words

Navigation