Skip to main content
Log in

Ultrastructure of scales in a teleost (Carassius auratus L.) after use of rapid freeze-fixation and freeze-substitution

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

New data on the ultrastructural features of the elasmoid scales ofCarassius auratus have been obtained by use of rapid freezing with subsequent freeze-substitution in anhydrous solvents. These are compared with the results obtained using conventional aqueous fixatives.

The external layer of the scales is composed of randomly oriented collagen fibres. In the first stages of mineralization, mineral deposits are located in the interfibrillary substance where dense granules appear to be active sites of mineralization. Spheritic mineralization occurs in this layer.

The fibrillary plate is composed of two kinds of collagen fibres. Most of them are organized in lamellae forming the “plywood-like structure”. They are thicker than the so-called “TC fibres”, which are oriented from the basal part towards the superficial layer. These TC fibres are involved in the first stages of mineral deposition in the fibrillary plate where inotropic mineralization occurs.

The mineral phase is almost always located in the interfibrillary matrix in both layers of the elasmoid scale. In this respect, teleost scales differ from those described so far in other lower vertebrates.

Resumé

Des précisions concernant les aspects ultrastructuraux des dépôts minéraux dans les écailles deCarassius auratus ont été obtenues grâce à l'utilisation de la congélation ultra-rapide suivie d'une cryosubstitution en milieu anhydre. Ces données sont comparées à celles fournies par les méthodes usuelles utilisant des fixateurs aqueux.

La couche externe des écailles comprend des fibres collagènes disposées sans ordre apparent. Les dépôts minéraux se produisent surtout dans la substance interfibrillaire où des granules denses semblent représenter des sites actifs au cours de la minéralisation apparentée au type sphéritique.

La plaque basale comporte deux catégories de fibres collagènes. Les unes, les plus nombreuses, de plus fort diamètre, sont organisées en lamelles formant une structure en contre-plaqué; les autres appelées “fibres TC”, orientées de la base de l'écaille vers la zone superficielle, jouent un rôle important dans les premières phases de la minéralisation de type inotropique dans cette partie de l'écaille.

Dans les deux couches de l'écaille, la phase minérale est surtout trouvée dans la substance interfibrillaire. De ce fait, les écailles élasmoides des Téleostéens peuvent être distinguées des autres écailles dermiques connues de Vertébrés inférieurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson HC (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59–72

    Google Scholar 

  • Anderson HC (1976) Matrix vesicles of cartilage and bone. In: Bourne GH (ed) The biochemistry and physiology of bone, Vol 4. Academic Press, New York San Francisco London, pp 135–157

    Google Scholar 

  • Baudelot ME (1873 a) Observations sur la structure et le développement des nageoires des Poissons osseux. Arch Zool Exp Gén 2:18–24

    Google Scholar 

  • Baudelot ME (1873 b) Recherches sur la structure et le développement des écailles des Poissons osseux. Arch Zool Exp Gén 2:87–224

    Google Scholar 

  • Bernard GW (1972) Ultrastructural observations of initial calcification in dentine and enamel. J Ultrastruct Res 41:1–17

    Google Scholar 

  • Bernard GW, Pease DC (1969) An electron microscopic study of initial intramembranous osteogenesis. Am J Anat 125:271–290

    Google Scholar 

  • Bertin L (1958) Ecailles et sclérifications dermiques. In: Grasse P-P (ed) Traité de zoologie, Vol 13. Masson, Paris, pp 482–504

    Google Scholar 

  • Blumenthal NC, Posner AS (1973) Hydroxyapatite: mechanism of formation and properties. Calcif Tissue Res 13:235–243

    Google Scholar 

  • Bonucci E (1970) Fine structure and histochemistry of “calcifying globules” in epiphyseal cartilage. Z Zellforsch 103:192–217

    Google Scholar 

  • Bonucci E (1971) The locus of initial calcification in cartilage and bone. Clin Orthop 78:108–139

    Google Scholar 

  • Boothroyd B (1954) The problem of demineralization in thin sections of fully calcified bone. J Cell Biol 20:165–173

    Google Scholar 

  • Boskey AL, Posner AS (1976) Extraction of a calcium-phospholipid-phosphate complex from bone. J Cell Biol 20:273–283

    Google Scholar 

  • Boskey AL, Posner AS, Lane JM, Goldberg MR, Cordelia DM (1980) Distribution of lipids associated with mineralization in the bovine epiphyseal growth plate. Arch Biochem Biophys 199:571–311

    Google Scholar 

  • Brown GA, Wellings SR (1969) Collagen formation and calcification in teleost scales. Z Zellforsch 93:571–582

    Google Scholar 

  • Cameron DA (1972) The ultrastructure of bone. In: Bourne GH (ed) The biochemistry and physiology of bone, Vol 1. Academic Press, New York London, pp 191–236

    Google Scholar 

  • Cooke PH (1967) Fine structure of the fibrillary plate in the central head scale of the striped killifishFundulus majalis. Trans Am Microsc Soc 86:273–279

    Google Scholar 

  • Dereszewski G, Howell DS (1978) The role of matrix vesicles in calcification. Trends in Biochem Sci 31:115–153

    Google Scholar 

  • Escaig J, Géraud G, Nicolas G (1977) Congélation rapide de tissus biologiques. Mesure des températures et des vitesses de congélation par thermocouple en couche mince. C R Acad Sci Paris 284 Ser D, 2289–2292

    Google Scholar 

  • Fouda MM (1979) Studies on scale structure in the common gobyPomatoschistus microps Krøyer. J Fish Biol 15:173–183

    Google Scholar 

  • Gay CV (1977) The ultrastructure of the extracellular phase of bone as observed in frozen sections. Calcif Tissue Res 23:215–223

    Google Scholar 

  • Gay CV, Schrear H (1975) Frozen thin-sections of rapidly forming bone: Bone cell ultrastructure. Calcif Tissue Res 19:39–49

    Google Scholar 

  • Glimcher MJ (1976) Composition, structure and organization of bone and other mineralized tissues and the mechanism of calcification. In: Greep RO, Astwood EB (eds) Handbook of physiology: Endocrinology, Vol 7. American Physiological Society, Baltimore, p 49

    Google Scholar 

  • Glimcher MJ, Krane SM (1968) The organization and structure of bone and the mechanism of calcification. In: Gould BS (ed) Treatise on collagen, Vol 2, part B. Academic Press, New York, pp 67–251

    Google Scholar 

  • Heuser JE, Reese TS, Landis DMD (1976) Preservation of synaptic structure by rapid freezing. Cold Spring Harbor Symp Quant Biol 40:17–24

    Google Scholar 

  • Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicles exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300

    Google Scholar 

  • Höhling HJ, Kreilos R, Neubauer G, Boyde A (1971) Electron microscopy and electron microscopical measurements of collagen mineralization in hard tissues. Z Zellforsch 122:36–52

    Google Scholar 

  • Irving JT, Wuthier RE (1968) Histochemistry and biochemistry of calcification with special reference to the role of lipids. Clin Orthop 56:237–260

    Google Scholar 

  • Keil A (1934) Über Doppelbrechung und Feinbau des menschlichen Zahnbeins. Z Zellforsch 21:635–652

    Google Scholar 

  • Keil A (1939) Über den Feinbau des normalen und krankhaften Zahnbeins nach Untersuchung in polarisiertem Licht. Dtsch Zahn-, Mund-, und Kieferheilk 6:347–364

    Google Scholar 

  • Klaatsch H (1894) Über die Herkunft des Scleroblasten. Ein Beitrag zur Lehre von Osteogenese. Morphol Jahrb 21:153–240

    Google Scholar 

  • Kobayashi S (1971) Acid mucopolysaccharides in calcified tissue. In: Bourne GH, Danielli JF (eds) Intern Rev Cytol Vol 30. Academic Press, New York, pp 257–371

    Google Scholar 

  • Kobayashi S, Yamada J, Maekawa K, Ouchi K (1972) Calcification and nucleation in fish-scales. Biomineralization 6:84–90

    Google Scholar 

  • Landis WJ, Glimcher MJ (1978) Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res 63:188–223

    Google Scholar 

  • Landis WJ, Paine MC, Glimcher MJ (1977 a) Electron microscopic observations of bone tissue prepared anhydrously in organic solvents. J Ultrastruct Res 59:1–30

    Google Scholar 

  • Landis WJ, Hauschka BT, Rogerson CA, Glimcher MJ (1977b) Electron microscopic observations of bone tissue prepared by ultramicrotomy. J Ultrastruct Res 59:185–206

    Google Scholar 

  • Landis WJ, Paine MC, Glimcher MJ (1980) Use of acrolein vapors for anhydrous preparation of bone tissue for electron microscopy. J Ultrastruct Res 70:171–180

    Google Scholar 

  • Landis WJ, Paine MC, Glimcher MJ (1981) Considerations for the electron optical identification of matrix vesicles and mineral phase particles possibly associated with them in calcifying tissues. 27th. Annual ORS, Las Vegas

  • Lanzing WJR, Wright RG (1976) The ultrastructure and calcification of the scales ofTilapia mossambica (Peters). Cell Tissue Res 167:37–47

    Google Scholar 

  • Luft JH (1971 a) Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec 171:347–368

    Google Scholar 

  • Luft JH (1971 b) Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat Rec 171:369–416

    Google Scholar 

  • Maekawa K, Yamada J (1970) Some histochemical and fine structural aspects of growing scales of the rainbow trout. Bull Fac Fish Hokkaido Univ 21:70–78

    Google Scholar 

  • Maekawa K, Yamada J (1972) Morphological identification and characterization of cells involved in the growth of the goldfish scale. Jap J Ichthyol 19:1–9

    Google Scholar 

  • Martino LJ, Yaeger VL, Taylor JJ (1979) An ultrastructural study of the role of calcification nodules in the mineralization of woven bone. Calcif Tissue Res 27:57–64

    Google Scholar 

  • Meunier FJ, Géraudie J (1980) Les structures en contre-plaqué du derme et des écailles. Ann Biol 19:1–18

    Google Scholar 

  • Miller AL, Schraer H (1975) Ultrastructural observations of amorphous bone mineral in avian bone. Calcif Tissue Res 18:311–318

    Google Scholar 

  • Moss ML (1961) The initial phylogenetic appearance of bone: an experimental hypothesis. Trans NY Acad Sci 23:495–500

    Google Scholar 

  • Moss ML (1969) Comparative histology of dermal sclerifications in reptiles. Acta Anat 73:510–533

    Google Scholar 

  • Mugiya Y, Watabe N (1977) Studies on fish scale formation and resorption. II. Effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish,Carassius auratus, and the killifish,Fundulus heteroclitus. Comp Biochem Physiol 57A: 197–202

    Google Scholar 

  • Mühlrad A, Bab IA, Sela J (1981) Dynamic changes in bone cells and extracellular matrix vesicles during healing of alveolar bone in rats: an ultrastructural and biochemical study. Metab Bone Dis and Rel Res 2:347–356

    Google Scholar 

  • Neave F (1936) The development of the scales ofSalmo. Trans Roy Soc Canada 30:55–72

    Google Scholar 

  • Neave F (1940) On the histology and regeneration of the teleost scale. Q J Microsc Sci 81:541–567

    Google Scholar 

  • Nicolas G, Escaig J (1980) Ultrastructural studies of biological specimens by quick-freezing and freeze-substitution. Eur J Cell Biol 22:612

    Google Scholar 

  • Nicolas G, Escaig J, Bassot JM, Hollande A, Zylberberg L (1980) Fixation par cryosubstitution après congélation ultra-rapide de différents matériels biologiques. Biol Cellul 39:12a

    Google Scholar 

  • Olson OP, Watabe N (1980) Studies on formation and resorption of fish scales. IV. Ultrastructure of developing scales in newly hatched fry of the sheephead minnow,Cyprinodon variegatus (Atheriniformes: Cyprinodontidae). Cell Tissue Res 211:303–316

    Google Scholar 

  • Onozato H, Watabe N (1979) Studies on fish scale formation and resorption. III. Fine structure and calcification of the fibrillary plates of the scales inCarassius auratus (Cypriniformes: Cyprinidae). Cell Tissue Res 201:409–422

    Google Scholar 

  • Ørvig T (1968) The dermal skeleton: general considerations. In: Ørvig T (ed) Current problems of lower vertebrate phylogeny. 4th Nobel Symp. Almqvist and Wiksell, Stockholm, pp 373–397

    Google Scholar 

  • Pease DC (1967 a) Eutetic ethylene glycol and pure propylene glycol as substituting media for the dehydration of frozen tissue. J Ultrastruct Res 21:75–97

    Google Scholar 

  • Pease DC (1967 b) The preservation of tissue fine structure during rapid freezing. J Ultrastruct Res 21:98–124

    Google Scholar 

  • Pellegrino ED, Biltz RM (1968) Bone carbonate and the Ca to P molar ratio. Nature 219:1261–1262

    Google Scholar 

  • Poole (1967) Phylogeny of tooth tissues enameloid and enamel in recent Vertebrates, with a note on the history of cementum. In: Miles AEW (ed) Structural and chemical organization of teeth. New York London, pp 111–149

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate of high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Google Scholar 

  • Schmidt WJ (1955) Die Erforschung molekularer Texturen tierischer Zellen und Gewebe an Hand der Polarisationsoptik. Nova Acta Leop (NF) 17:497–516

    Google Scholar 

  • Schönbörner AA, Boivin G, Baud CA (1979) The mineralization processes in teleost fish scales. Cell Tissue Res 202:203–212

    Google Scholar 

  • Schönbörner AA, Meunier FJ, Castanet J (1981) The fine structure of calcified Mandl's corpuscules in teleost fish scales. Tissue Cell 19:589–597

    Google Scholar 

  • Sobel AT, Burger M, Nebel S (1960) Mechanisms of nuclei formation in mineralizing tissue. Clin Orthop 17:103–123

    Google Scholar 

  • Thiery J-P (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc 6:987–1018

    Google Scholar 

  • Thiery J-P, Rambourg A (1974) Cytochimie des polysaccharides. J Microsc 21:225–232

    Google Scholar 

  • Urist MR (1976) Biochemistry of calcification. In: Bourne GH (ed) The biochemistry and physiology of bone, Vol 4. Academic Press, New York San Francisco London, pp 2–59

    Google Scholar 

  • Van Harreveld A, Crowell J (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat Rec 149:381–386

    Google Scholar 

  • Van Harreveld A, Crowell J, Malhotra SK (1965) A study of extracellular space in central nervous tissue by freeze-substitution. J Cell Biol 25:117–137

    Google Scholar 

  • Van Oosten J (1957) The skin and scales. In: Brown ME (ed) The physiology of fishes. Vol 1. Academic Press, New York London, pp 207–244

    Google Scholar 

  • Wallin O (1956) Mucopolysaccharides and calcification of the scale of the roach (Leuciscus rutilus). Q J Microsc Sci 97:329–332

    Google Scholar 

  • Waterman RE (1970) Fine structure of scale development in the teleost,Brachydanio rerio. Anat Rec 168:361–380

    Google Scholar 

  • Yamada J (1971) A fine structural aspect of the development of the scales in the chum salmo fry. Bull Jap Soc Sci Fish 37:18–29

    Google Scholar 

  • Yamada J, Watabe N (1979) Studies on fish scale formation and resorption. I. Fine structure and calcification of the scales inFundulus heteroclitus (Atheriniformes: Cyprinodontidae). J Morphol 159:49–66

    Google Scholar 

  • Zylberberg L, Castanet J (1980) Structure of the dermal scales in a reptile:Anguis fragilis L. 2nd Conf Europ Soc Comp Skin Biol, p 7

  • Zylberberg L, Meunier FJ (1981) Evidence of denticles and attachment fibres in the superficial layer of scales in two fishes:Carassius auralus L. andCyprinus carpio L. (Cyprinidae, Teleostei). J Zool 195:459–471

    Google Scholar 

  • Zylberberg L, Castanet J, Ricqlès A de (1980) Structure of the dermal scales in Gymnophiona (Amphibia). J Morphol 165:41–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zylberberg, L., Nicolas, G. Ultrastructure of scales in a teleost (Carassius auratus L.) after use of rapid freeze-fixation and freeze-substitution. Cell Tissue Res. 223, 349–367 (1982). https://doi.org/10.1007/BF01258495

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01258495

Key words

Navigation