Skip to main content
Log in

Nephridial innervation in the leech Hirudo medicinalis L.

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The main organs for salt and water homeostasis in the medicinal leech, the nephridia, were found to be densely innervated by a single branch of the corresponding median anterior segmental nerve.

The projections of two different neurons into the nephridia are described:

  1. 1.

    Dendritic projections of the previously identified, afferent ‘nephridial nerve cell’, a possible salt receptor, lie between the urine forming cells and the blood vessels supplying the nephridium without making any contact.

  2. 2.

    Projections of an unidentified neuron which contains dense-core vesicles (85 nm) as well as smaller clear vesicles (45 nm) contact the primary urine forming canaliculus cells. The neurosecretory role of these neurons is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurons in wholemount preparations. Brain Res 138:359–363

    Google Scholar 

  • Boroffka I (1968) Osmo-and Volumenregulation bei Hirudo medicinalis. Z Vergl Physiol 57:348–375

    Google Scholar 

  • Boroffka I, Hamp W (1969) Topographie des Kreislaufssystems und der Zirkulation bei Hirudo medicinalis. Z Morphol Tiere 64:59–76

    Google Scholar 

  • Boroffka I, Altner H, Haupt J (1970) Function und Ultrastruktur des Nephridiums von Hirudo medicinalis. I. Ort und Mechanismus der Primärharnbildung. Z Vergl Physiol 66:421–438

    Google Scholar 

  • Gupta BL, Berridge MJ (1966) Fine structural organization of the rectum in the blowfly, Calliphora erythrocephala (Meig) with special reference to connective tissue, tracheae, and neurosecretory innervation in the rectal papillae. J Morphol 120:23–82

    Google Scholar 

  • Hammersen F, Staudte HW, Möhring E (1976) Studies on the fine structure of invertebrate blood vessels. II. The valves of the lateral sinus of the leech, Hirudo medicinalis. Cell Tissue Res 172:405–423

    Google Scholar 

  • Haupt J (1974) Funktion and ultrastructure of the nephridium of Hirudo medicinalis. II. Fine structure of the central canal and the urinary bladder. Cell Tissue Res 152:385–401

    Google Scholar 

  • Kaufman WR, Phillips JE (1973a) Ion and water balance in the ixodid tick Dermacentor andersoni. I. Routes of ion and water excretion. J Exp Biol 58:523–536

    Google Scholar 

  • Kaufman WR, Phillips JE (1973b) Ion and water balance in the ixodid tick Dermacentor andersoni. II. Mechanisms and control of salivary excretion. J Exp Biol 58:537–547

    Google Scholar 

  • Krahl B, Zerbst-Boroffka I (1983) Blood pressure in the leech Hirudo medicinalis. J Exp Biol 107:163–168

    Google Scholar 

  • Lent CM (1981) Morphology of neurons containing monoamines within leech segmental ganglia. J Exp Zool 216:311–316

    Google Scholar 

  • Maddrell SHP (1969) Secretion by the Malpighian tubules of Rhodnius. The movements of ions and water. J Exp Biol 51:71–98

    Google Scholar 

  • Maranto AR, Calabrese RL (1984) Neural control of the hearts in the leech, Hirudo medicinalis. I. Anatomy, electrical coupling, and innervation of the hearts. J Comp Physiol A 154:367–380

    Google Scholar 

  • Meredith J, Kaufman WR (1973) A proposed site of fluid secretion in the salivary gland of the ixodid thick Dermacentor andersoni. Parasitology 67:205–217

    Google Scholar 

  • Muller KJ, Carbonetto S (1979) The morphological and physiological properties of a regenerating synapse in the CNS of the leech. J Comp Neurol 185:485–516

    Google Scholar 

  • Muller KJ, McMahan UJ (1976) The shapes of sensory and motoneurones and the distribution of their synapses in the ganglia of the leech: A study using intracellular injection of horseradish peroxidase. Proc R Soc Lond (Biol) 194:481–499

    Google Scholar 

  • Muller KJ, Nicholls JG, Stent GS (eds) Neurobiology of the leech. Cold Spring Harbor Laboratory, 1981

  • Ort CA, Kristan WB, Stent GS (1974) Neuronal control of swimming in the medicinal leech. II. Identification and connections of motor neurons. J Comp Physiol 94:121–154

    Google Scholar 

  • Oschman JL, Wall BJ (1969) The structure of the rectal pads of Periplaneta americana L. with regard to fluid transport. J Morphol 127:475–510

    Google Scholar 

  • Phillips JE (1981) Comparative physiology of insect renal function. Am J Physiol 241: R241-R257

    Google Scholar 

  • Rosenberg J (1979) Topographie und Feinstruktur des Maxilarnephridium von Scutigera coleoptera (L.) (Chilopoda, Notostigmorpha). Zoomorphologie 92:141–159

    Google Scholar 

  • Rosenberg J (1982) Coxal organs in Geophilomorpha (Chilopoda). Organization and fine structure of the transporting epithelium. Zoomorphology 100:107–120

    Google Scholar 

  • Rosenberg J, Seifert G (1977) The coxal glands of Geophilomorpha (Chilopoda): Organs of osmoregulation. Cell Tissue Res 182:247–251

    Google Scholar 

  • Shankland M, Weisblad DA (1984) Stepwise commitment of blast cells during the positional specification of the O and P cell lines in the leech embryo. Dev Biol 106:326–342

    Google Scholar 

  • Thompson WJ, Stent GS (1976) Neuronal control of the hearbeat in the medicinal leech. I. Generation of the vascular constriction rhythm by heart motor neurons. J Comp Physiol 111:261–279

    Google Scholar 

  • Wenning A (1979) Structure and Function of the hindgut of Lithobius forficatus (Myriapoda, Chilopoda). In: Camatini M (ed) Myriapod biology. Academic Press, London New York

    Google Scholar 

  • Wenning A (1983) A sensory neuron associated with the nephridia of the Leech Hirudo medicinalis L. J Comp Physiol 152:455–458

    Google Scholar 

  • Wenning A (1985) Do the nephridial nerve cells serve as osmoreceptors in the leech? Verh Dtsch Zool Ges 78:244

    Google Scholar 

  • Wenning A, Zerbst-Boroffka I, Bazin B (1980) Water and salt excretion in the leech (Hirudo medicinalis L). J Comp Physiol 139:97–102

    Google Scholar 

  • Zerbst-Boroffka I (1973) Osmo-und Volumenregulation bei Hirudo medicinalis nach Nahrungsaufnahme. J Comp Physiol 84:184–204

    Google Scholar 

  • Zerbst-Boroffka I (1975) Function and ultrastructure of the nephridium in Hirudo medicinalis L. III. Mechanisms of the formation of primary and final urine. J Comp Physiol 100:307–315

    Google Scholar 

  • Zerbst-Boroffka I (1978) Blood volume as a controlling factor for body water homeostasis in Hirudo medicinalis. J Comp Physiol 127:343–347

    Google Scholar 

  • Zerbst-Boroffka I, Haupt J (1975) Morphology and function of the metanephridia in annelids. Fortschr Zool 23:33–47

    Google Scholar 

  • Zerbst-Boroffka I, Wenning A, Bazin B (1982a) Primary urine formation during diuresis in the leech, Hirudo medicinalis L. J Comp Physiol 146:75–79

    Google Scholar 

  • Zerbst-Boroffka I, Bazin B, Wenning A (1982b) Nerve supply of the excretory system and the lateral vessels of the leech. Verh Dtsch Zool Ges 75:341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenning, A., Cahill, M.A. Nephridial innervation in the leech Hirudo medicinalis L.. Cell Tissue Res. 245, 397–404 (1986). https://doi.org/10.1007/BF00213947

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00213947

Key words

Navigation