Skip to main content
Log in

Murine monoclonal glutamic acid decarboxylase (GAD)65 antibodies recognize autoimmune-associated GAD epitope regions targeted in patients with type 1 diabetes mellitus and Stiff-man syndrome

  • Original
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

To study the immune response to glutamic acid decarboxylase (GAD) in insulin-dependent diabetes mellitus, monoclonal GAD antibodies after fusion of splenocytes from a nondiabetes-susceptible BALB/c mouse immunized with human recombinant GAD65 were generated. Of the 44 monoclonals, 35 are specific for the GAD65 isoform, whereas 9 also react with GAD67. Some 37 monoclonals, including all GAD65/67 reactive antibodies, react with GAD by Western blot analysis. The remaining 7 GAD65 monoclonals bind GAD only in an immunoprecipitation assay, which implies that they target epitopes dependent on the conformation of the GAD molecule. The125I-GAD binding of the GAD65 monoclonals reactive on Western blotting was significantly diminished by all 3 sera from Stiff-man syndrome patients but only by 3/30 (10%) sera from type 1 diabetic patients. In contrast, the 7 monoclonal antibodies reactive with a conformation-dependent GAD epitope were competitive with 83% of GAD-autoantibody-positive sera from these diabetic patients. Using chimeric GAD65/67 proteins, the epitope region targeted by these monoclonals was mapped to the middle of GAD65 (amino acids 221–442). This central conformation-dependent GAD region was also targeted by sera from patients with type 1 diabetes. In conclusion, our data show that evne after common immunization of a nondiabetes-susceptible mouse strain, monoclonals were obtained which preferentially react with the GAD65 linear amino-terminus (amino acids 4–17) and a conformation-dependent region located in the middle of GAD targeted by autoantibodies, indicating that this GAD region is not restricted to the autoimmune response associated with the Stiff-man syndrome and the bete-cell destruction in type 1 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baekkeskov S, Aanstoot HJ, Christgau S, Reetz S, Solimena A, Cascalho M, Folli F, Richter-Olesen H, Camilli P, Identification of the 64 K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347:151–156, 1990

    PubMed  Google Scholar 

  2. Solimena M, De Camilli P, Autoimmunity to glutamic acid decarboxylase (GAD) in stiff-man syndrome and insulin-dependent diabetes mellitus. Trends Neurosci 14:452–457, 1991

    PubMed  Google Scholar 

  3. Björk E, Velloso LA, Kämpe I, Karlsson FA, GAD autoantibodies in IDDM, stiff-man syndrome, and autoimmune polyendocrine syndrome type I recognize different epitopes. Diabetes 43:161–165, 1994

    PubMed  Google Scholar 

  4. Solimena M, Butler MH, De Camilli P, GAD, diabetes, and Stiff-Man syndrome: Some progress and more questions. J Endocrinol Invest 17:509–520, 1994

    PubMed  Google Scholar 

  5. Velloso LA, Kämpe O, Hallberg A, Christmanson L, Betsholtz C, Karlsson FA, Demonstration of GAD-65 as the main immunogenic isoform of glutamate decarboxylase in type 1 diabetes produced by eucaryotic expression. J Clin Invest 91:2084–2090, 1993

    PubMed  Google Scholar 

  6. Kim J, Namchuk M, Bugawan T, Fu Q, Jaffe M, Shi Y, Aanstoot HJ, Turck CW, Ehrlich H, Lennon V, Higher autoantibody levels and recognition of a linear NH2-terminal epitope in the autoantigen GAD65 distinguish stiff-man syndrome from insulindependent diabetes mellitus. J Exp Med 180:595–606, 1994

    PubMed  Google Scholar 

  7. Richter W, Shi Y, Baekkeskov S, Autoreactive epitopes defined by diabetes-associated human monoclonal antibodies are localized in the middle and C-terminal domains of the smaller form of glutamate decarboxylase. Proc Natl Acad Sci USA 90:2832–2836, 1993

    PubMed  Google Scholar 

  8. Mauch L, Seissler J, Haubruck H, Cook NJ, Abney CC, Berthold H, Wirbelauer C, Liedvogel B, Scherbaum W, Northemann W, Baculovirus-mediated expression of human 65-kDa and 67-kDa glutamic acid decarboxylase in SF9 insect cells and their relevance in diagnosis of insulin-dependent diabetes mellitus. J Biochem 113:699–704, 1993

    PubMed  Google Scholar 

  9. Lane RD, A short-duration polyethylene glycol fusion technique for increasing production of monoclonal antibody-secreting hybridomas. J Immunol Methods 81:223–228, 1985

    PubMed  Google Scholar 

  10. Ziegler B, Augstein P, Schröder D, Mauch L, Hahmann J, Schlosser M, Ziegler M, Glutamate decarboxylase (GAD) is not detectable on the surface of rat islet cells examined by cytofluorometry and complement-dependent antibody-mediated cytotoxicity of monoclonal GAD antibodies. Horm Metab Res 28:11–15, 1996

    PubMed  Google Scholar 

  11. Ziegler B, Augstein P, Lühder F, Northemann W, Hamann J, Schlosser M, Klöting I, Michaelis D, Ziegler M, Monoclonal antibodies specific to the glutamic acid decarboxylase 65 kDa isoform derived from a non-obese diabetic (NOD) mouse. Diabetes Res 25:47–64, 1994

    PubMed  Google Scholar 

  12. Hamann J, Lühder F, Schlosser M, Vieregge P, Ziegler B, Ziegler M, Specific screening of monoclonal antibodies to glutamic acid decarboxylase by a sandwich assay using the natural target antigen plate-bound via autoantibodies. Diabetes Res 24:57–66, 1993

    Google Scholar 

  13. Hamann J, Hahmann J, Strebelow M, Ziegler B, Ziegler M, A monoclonal antibody based enzyme-linked immunosorbent assay for the determination of GAD65, the smaller isoform of glutamic acid decarboxylase. Diabetes Res 26:109–116, 1994

    PubMed  Google Scholar 

  14. Schlosser M, Witt S, Ziegler B, Ziegler M, Influence of target cell preparation on binding of monoclonal islet cell reactive antibodies (mc-ICRA) in cellular enzyme-linked immunosorbent assay (CELISA). J Immunol Methods 140:101–109, 1991

    PubMed  Google Scholar 

  15. Wu JY, Matusuda T, Roberts E, Purification and characterization of glutamate decarboxylase from mouse brain. J Biochem 248:3029–3034, 1973

    Google Scholar 

  16. Lühder F, Woltanski KP, Hamann J, Klöting I, Ziegler B, Ziegler M, Detection of antibodies against both isoforms of glutamate decarboxylase in BB/OK rats by Western blotting and immuno-trapping enzyme activity assay. Diabetes Res 20:97–107, 1992

    PubMed  Google Scholar 

  17. Laemmli UK, Most commonly used discontinous buffer system for SDS electrophoresis. Nature 227:680–685, 1970

    PubMed  Google Scholar 

  18. Daw K, Powers AC, Two distinct glutamic acid decarboxylase auto-antibody specificities in IDDM target different epitopes. Diabetes 44:216–220, 1995

    PubMed  Google Scholar 

  19. Guesdon J, Ternyck T, Avrameas S, The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27:1131–1139, 1979

    PubMed  Google Scholar 

  20. Vieregge P, Branczyk B, Barnett W, Stöcker W, Soyka D, Kömpf D, Stiff-man Syndrom. Nervenarzt 65:712–717, 1994

    PubMed  Google Scholar 

  21. Lühder F, Schlosser M, Mauch L, Haubruck H, Rjasanowski I, Michaelis D, Kohnert KD, Ziegler M, Autoantibodies against GAD65 rather than GAD67 precede the onset of type I diabetes. Autoimmunity 19:71–80, 1994

    PubMed  Google Scholar 

  22. DeAizpurua HJ, Harrison LC, Cram DS, An ELISA for antibodies to recombinant glutamic acid decaboxylase in IDDM. Diabetes 41:1182–1187, 1992

    PubMed  Google Scholar 

  23. Hagopian WA, Michelsen B, Karlsen Al, Moddy A, Grubin CE, Rowe R, Petersen J, McEvoy R, Lernmark A, Autoantibodies in IDDM primarily recognize the 65,000-Mr rather than the 67,000-Mr isoform of glutamic acid decarboxylase. Diabetes 42:631–636, 1993

    PubMed  Google Scholar 

  24. Seissler J, Amann J, Mauch L, Haubruck H, Wolfahrt S, Bieg S, Richter W, Holl R, Heinze E, Northemann W, Scherbaum WA, Prevalence of autoantibodies to the GAD65-and 67-kD isoforms of glutamate decarboxylase in insulin dependent diabetes mellitus. J Clin Invest 92:1394–1399, 1993

    PubMed  Google Scholar 

  25. Butler MH, Solimena M, Dirkx R, Hayday A, De Camilli P, Identification of a dominant epitope of glutamic acid decarboxylase (GAD-65) recognized by autoantibodies in Stiff-man syndrome. J Exp Med 178:2097–2106, 1993

    PubMed  Google Scholar 

  26. Bu DF, Erlander MG, Hitz BC, Tillakaratne NJK, Kaufmann DJ, Wagner-McPherson CB, Evans GA, Tobin AJ, Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 89: 2115–2119, 1992

    PubMed  Google Scholar 

  27. Li L, Hagopian WA, Brashear HR, Daniels T, Lernmark A, Identification of autoantibody epitopes of glutamic acid decarboxylase in Stiff-man Syndrome patients. J Immunol 152:930–934, 1994

    PubMed  Google Scholar 

  28. Tuomi T, Rowley MJ, Chen QY, Mackey IR, The B cell epitope of glutamic acid decarboxylase is conformational and aggregate-dependent. Diabetologia 36 (Suppl 1):A351, 1993

    Google Scholar 

  29. Kaufmann DLM, Clare-Salzler JD, Tianet J, Tian T, Forsthuber GSP, Tinge P, Robinson P, Atkinson MA, Sercarz EE, Robin AJ, Lehmann PV, Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin dependent diabetes. Nature 366:69–72, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, B., Schlosser, M., Lühder, F. et al. Murine monoclonal glutamic acid decarboxylase (GAD)65 antibodies recognize autoimmune-associated GAD epitope regions targeted in patients with type 1 diabetes mellitus and Stiff-man syndrome. Acta Diabetol 33, 225–231 (1996). https://doi.org/10.1007/BF02048548

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02048548

Key words

Navigation