Skip to main content
Log in

Two-Electron Aromatics with Classical and Non-Classical Homobridges

  • FULL PAPER
  • Published:
Molecular modeling annual Aims and scope Submit manuscript

Abstract

Bishomotriborirane anions with a B-H-B bridge, 7, have been synthesized by a) protonation and b) methylation of bishomodianions, 3, as well as by c) hydride addition to 1,2,4-triboracyclopentanes, 15. Compounds 7 were characterized by 1H, 13C and 11B NMR spectroscopy and X-ray diffraction analyses. The suggested mechanism for the formation of 7 is supported by MP4SDTQ/6-311++G**//MP2(fc)/6-31+G* computations on [C2B3H8]- model compounds. Classical 1,2-dibora-4-borata-cyclopentane intermediates 16 undergo an intramolecular hydrogen shift to the B-B unit in their envelope conformation to give intermediates 17, which easily isomerize to 7. Relative energies for the parent compounds, 16u, 17u, 7u and the transition structures, TS-16/17u and TS-7/17u are predicted to be 30.7, 14.5, 0.0, 32.6 and 23.5 kcal mol-1, respectively. The terms classical and non-classical homobridges are suggested for methylene and hydrogen bridges in 7 and in related compounds on the grounds of common building principles. The strength of homoaromaticity in 7u was estimated to be at least 23.5 kcal mol-1, neglecting the much higher strain in 7u compared to TS-7/17u without a 3c2e bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, M., Scheschkewitz, D., Ghaffari, A. et al. Two-Electron Aromatics with Classical and Non-Classical Homobridges. J Mol Model 6, 257–271 (2000). https://doi.org/10.1007/s0089400060257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s0089400060257

Navigation