Skip to main content
Log in

Increased oxacillin activity associated with glycopeptides in coagulase-negative staphylococci

  • Article
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

Vancomycin resistance in methicillin-resistant staphylococci presents a potential therapeutic problem. In order to understand the impact of low-level vancomycin resistance in coagulase-negative Staphylococci, stepwise selection of vancomycin resistance was accomplished by growingstaphylococcus haemolyticus in culture media with increasing concentrations of vancomycin. A >40-fold increase in susceptibility to β-lactam antibiotics was observed. No obvious alterations in the growth curve, the presence of themecA gene, total DNA restriction fragment length polymorphism (RFLP), β-lactamase production, or the crude protein fraction were detected in thestaphylococcus haemolyticus-derived clones when compared to the original isolate. The proportion of the oxacillin-heteroresistant population also remained similar. A comparable phenomenon occurred with the selection ofstaphylococcus epidermidis exhibiting low-level resistance to vancomycin. Additionally, it was observed that clinical isolates of coagulase-negative Staphylococci grown in the presence of sub-minimum inhibitory concentrations of either vancomycin or teicoplanin lost their high-level resistance to oxacillin. Checkerboard tests showed that the combination of vancomycin and oxacillin was synergistic for two isolates ofStaphylococcus haemolyticus, two of four isolates ofStaphylococcus epidermidis, and one isolate ofStaphylococcus hominis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edmond MB, Wenzel RP, Pasculle AW: Vancomycin-resistantStaphylococcus aureus: perspectives on measures needed for control. Annals of Internal Medicine (1996) 124:329–334.

    PubMed  Google Scholar 

  2. Georgopapadakou NH: Penicillin-binding proteins and bacterial resistance to β-lactams. Antimicrobial Agents and Chemotherapy (1993) 37:2045–2053.

    PubMed  Google Scholar 

  3. Johnson AP, Uttley AHC, Woodford N, George RC: Resistance to vancomycin and teicoplanin: an emerging clinical problem. Clinical Microbiology Reviews (1990) 3:280–291.

    PubMed  Google Scholar 

  4. Aubert G, Passot S, Lucht F, Dorche G: Selection of vancomycin- and teicoplanin-resistantStaphylococcus haemolyticus during teicoplanin treatment ofStaphylococcus epidermidis infection. Journal of Antimicrobial Chemotherapy (1990) 25:491–493.

    PubMed  Google Scholar 

  5. Schwalbe RS, Stapelton JT, Gilligan HP: Emergence of vancomycin resistance in coagulase-negative staphylococci. New England Journal of Medicine (1987) 316:2432–2437.

    Google Scholar 

  6. Veach LA, Pfaller MA, Barrett M, Koontz FP, Wenzel RP: Vancomycin resistance inStaphylococcus haemolyticus causing colonization and bloodstream infection. Journal of Clinical Microbiology (1990) 28:2064–2068.

    PubMed  Google Scholar 

  7. Herwaldt L, Boyken L, Pfaller M: In vitro selection of resistance to vancomycin in bloodstream isolates ofStaphylococcus haemolyticus andStaphylococcus epidermidis. European Journal of Clinical Microbiology & Infectious Diseases (1991) 10:1007–1012.

    Google Scholar 

  8. Biavasco F, Giovanetti E, Montanari MP, Lupidi R, Varaldo PE: Development of in-vitro resistance to glycopeptide antibiotics: assessment in staphylococci of different species. Journal of Antimicrobial Chemotherapy (1991) 27:71–79.

    PubMed  Google Scholar 

  9. Schwalbe RS, Ritz WJ, Verma PR, Barranco EA, Gilligan PH: Selection for vancomycin resistance in clinical isolates ofStaphylococcus haemolyticus. Journal of Infectious Diseases (1990) 161:45–51.

    PubMed  Google Scholar 

  10. Jett BD, Huycke MM, Gilmore MS: Virulence of enterococci. Clinical Microbiology Reviews (1994) 7:462–478.

    PubMed  Google Scholar 

  11. Murray B: New aspects of antimicrobial resistance and the resulting therapeutic dilemmas. Journal of Infectious Diseases (1991) 163:1185–1194.

    Google Scholar 

  12. Van Horn KG, Gedris CA, Rodney KM: Selective isolation of vancomycin-resistant enterococci. Journal of Clinical Microbiology (1996) 34:924–927.

    PubMed  Google Scholar 

  13. Roychoudhury S, Dotzlaf JE, Ghag S, Yeh WK: Purification, properties, and kinetics of enzymatic acylation with β-lactams of soluable penicillin-binding protein 2a. Journal of Biolological Chemistry (1994) 269:12067–12073.

    Google Scholar 

  14. De Lencastre H, De Lencastre A, Tomasz A: Methicillin-resistantStaphylococcus aureus isolates recovered from a New York City hospital: analysis by molecular fingerprinting techniques. Journal of Clinical Microbiology (1996) 34:2121–2124.

    PubMed  Google Scholar 

  15. Reynolds PE: Structure, biochemistry and mechanism of action of glycopeptide antibiotics. European Journal of Clinical Microbiology & Infectious Diseases (1989) 8:943–950.

    Google Scholar 

  16. Walsh CT: Vancomycin resistance: decoding the molecular logic. Science (1993) 261:308–309.

    PubMed  Google Scholar 

  17. Arthur M, Molinas C, Bugg TDH, Wright GD, Walsh CT: Evidence for in vivo incorporation of D-lactate into peptidoglycan precursors of vancomycin-resistant enterococci. Antimicrobial Agents and Chemotherapy (1992) 36:867–869.

    PubMed  Google Scholar 

  18. Fraimow HS, Shlaes DM: Glycopeptide resistance in gram-positive pathogens. In: Jungkind DL, Mortenson JE, Fraimow HS, Calandra GB (eds): Antimicrobial resistance: a crisis in health care. Plenum Press, New York, (1995) pp 81–95.

    Google Scholar 

  19. Sieradzki K, Tomasz A: Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant ofStaphylococcus aureus. Journal of Bacteriology (1997) 179:2557–2566.

    PubMed  Google Scholar 

  20. Sieradzki K, Tomasz A: A highly vancomycin-resistant laboratory mutant ofStaphylococcus aureus. FEMS Microbiology Letters (1996) 142:2557–2566.

    Google Scholar 

  21. National Committee for Clinical Laboratory Standards: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, M7-A4. NCCLS, Villanova, Pa., (1996).

    Google Scholar 

  22. Kacica M, Horgan MJ, Preston KE, Lepow M, Venezia RA: Relatedness of coagulase-negative staphylococci causing bacteremia in low-birthweight infants. Infection Control and Hospital Epidemiology (1994) 15:658–662.

    PubMed  Google Scholar 

  23. Tomasz A, Nachman S, Leaf H: Stable classes of phenotypic expression on methicillin-resistant clinical isolates of staphylococci. Antimicrobial Agents and Chemotherapy (1991) 35:124–129.

    PubMed  Google Scholar 

  24. Froggat JW, Johnston JL, Galetto DW, Archer GL: Antimicrobial resistance in nosocomial isolates ofStaphylococcus haemolyticus. Antimicrobial Agents and Chemotherapy (1989) 33:460–466.

    PubMed  Google Scholar 

  25. Jones R, Sader HS: The clinical impact of enterococcal resistance. Challenges in Infectious Disease (1993) 1:1–6.

    Google Scholar 

  26. Daum RS, Gupta S, Sabbagh R, Milewski WM: Characterization ofStaphylococcus aureus isolates with decreased susceptibility to vancomycin and teicoplanin: isolation and purification of a constitutively produced protein associated with decreased susceptibility. Journal of Infectious Diseases (1992) 166:1066–1072.

    PubMed  Google Scholar 

  27. Handwerger S, Pucci MJ, Volk KJ, Liu J, Lee MS: The cytoplasmic peptiodoglycan precursor of vancomycin-resistantEnterococcus faecalis terminates in lactate. Journal of Bacteriology (1992) 174:5982–5984.

    PubMed  Google Scholar 

  28. Woodford N, Johnson AP, Morrison D, Speller DCE: Current perspectives on glycopeptide resistance. Clinical Microbiology Reviews (1995) 8:585–615.

    PubMed  Google Scholar 

  29. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC: Methicillin-resistantStaphylococcus aureus clinical strain with reduced vancomycin susceptibility. Journal of Antimicrobial Chemotherapy (1997) 40:135–146.

    PubMed  Google Scholar 

  30. Shlaes DM, Shlaes JH: Teicoplanin selects forStaphylococcus aureus that is resistant to vancomycin. Clinical Infectious Diseases (1995) 20:1071–1073.

    PubMed  Google Scholar 

  31. Leclercq R, Bingen E, Su QH, Lambert-Zechovski N, Courvalin P, Duval J: Effects of combinations of β-lactams, daptomycin, gentamicin, and glycopeptides against glycopeptide-resistant enterococci. Antimicrobial Agents and Chemotherapy (1991) 35:92–98.

    PubMed  Google Scholar 

  32. Sieradzki K, Villari P, Tomasz A: Decreased susceptibilities to teicoplanin and vancomycin among coagulase-negative methicillin-resistant clinical isolates of staphylococci. Antimicrobial Agents and Chemotherapy (1998) 42:100–107.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domaracki, B.E., Evans, A., Preston, K.E. et al. Increased oxacillin activity associated with glycopeptides in coagulase-negative staphylococci. Eur. J. Clin. Microbiol. Infect. Dis. 17, 143–150 (1998). https://doi.org/10.1007/BF01691109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01691109

Key words

Navigation