Skip to main content
Log in

Sorption kinetics in haemoperfusion columns. Part 2: modelling column performance

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The relative influences of the normalised adsorption, mass transfer and hydrodynamic parameters on the performance of haemoperfusion columns are quantified using a lumped parameter, mass transfer model, validatedin vitro. The effects of patient pharmacokinetics and protein binding are then investigated using the model. In addition, the solution of the distributed parameter model of an adsorber column, at small times, is used to emphasise the role of the external diffusion resistance in determining column performance for both free and protein bound toxins. This rationale facilitates a logical comparison between haemoperfusion and haemodialysis on the basis of the controlling mass transfer mechanisms in each technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A m :

Membrane area of haemodialyser

a p :

Specific surface area of sorbent

Cl :

Clearance=Q b(1−C out/Cin)

c n :

Bulk concentration in fluid phase ofnth cell

c *n :

Fluid phase concentration at sorbent surface

c 0 :

Normalising fluid phase concentration

D a :

Axial dispersion coefficient

D s :

Solid diffusivity in sorbent

d p :

Diameter of sorbent particle

K :

Protein binding coefficient

K 1 :

Affinity constant in Langmuir isotherm

k :

Mass transfer coefficient

l :

Length of column

M :

Mass of sorbent

N e :

Number of external mass transfer units=(k eap(l−ε)nv/Qb)

N o :

Number of mass transfer units in haemodialyser=(k tAm/Qb)

N s :

Number of intraparticle mass transfer units=(60D sΛnv/d 2p Qb

n :

Number of cells in lumped-parameter model

Pe l :

Longitudinal Pectlet number=U sl/Da

Q :

Volumetric flow rate

q m :

Maximum solid-phase concentration in Langmuir isotherm

q n :

Bulk solid-phase concentration

q *n :

Solid phase concentration at sorbent surface

q o :

Normalising solid phase concentration=q m(K1 c 0/(1+K lc0))

R :

Isotherm shape parameter=1/(1+K lco)

Re :

Reynolds number=U sdp/v

RR :

Recircular ratio =ρ bnqO/VpcO

Sc :

Schmidt number=v/D

Sh :

Sherwood number=kd p/D

T :

Throughput (normalised time) parameter=(Q bt/nvΛ)

t :

Real time

U s :

Superficial velocity

V p :

Volume of single-pool patient model

v :

Total volume ofnth cell

X n :

Normalised fluid phase concentration=(c n/co)

X p :

Normalised toxin concentration in patient

Y n :

Normalised solid phase concentration=(q n/qo)

Z :

Qb/Qd

ε:

Bed porosity

Λ:

Adsorption coefficient=ρ bqo/co

μ* :

Volume fraction water in blood

v :

Kinematic viscosity

ρ:

Density

ρ * :

Protein binding coefficient

ψ q :

Correction factor (Hall et al., 1996)

b :

Blood or bulk

d :

Dialysate

e :

External

in :

Inlet concentration to column

m :

Membrane

o :

Standard value

out :

Outlet concentration from column

References

  • Babb, A. L., Popovich, R. P., Christopher, T. G. andScribner, B. H. (1971) The genesis of the square meter hour hypothesis.Trans. Am. Soc. Artif. Intern. Organs,17, 81–91.

    Google Scholar 

  • Chen, J. W., Cunningham, F. L. andBuege, J. A. (1972) Computer simulation of plant scale multicolumn adsorption processes under periodic countercurrent operation.Ind. Eng. Chem. Process. Des. Develop.,11, 430–434.

    Article  Google Scholar 

  • Cooney, D. O., Infantalino, W. andKane, R. (1978) Comparative studies of hemoperfusion devices.In vitro clearance characteristics.Biomat. Med. Dev. Art. Org.,6, 199–213.

    Google Scholar 

  • Cooney, D. O. andDaly, J. S. (1979) Mass transfer characteristics of hollow fibre dialysers and haemoperfusion devices.Art. Org.,3, 253–257.

    Article  Google Scholar 

  • Cruze, C. A. andMeyer, M. C. (1976) Binding of salicylate and sulfathiazole by whole blood constituents.J. Pharm. Sci.,65, 33–37.

    Google Scholar 

  • Dunlop, E. H., Gazzard, B. H., Langley, P. G., Weston, M. J., Cox, L. R. andWilliams, R. (1976) Design features of haemoperfusion columns containing activated carbon.Med. & Biol. Eng.,14, 220–226.

    Google Scholar 

  • Farrell, P. C. (1972) Solute protein binding and membrane transport characteristics in haemodialysis. PhD thesis, Washington University.

  • Gibson, T. P., Matusik, E., Nelson, L. D. andBriggs, W. A. (1976) Artificial kidneys and clearance calculations.Clin. Pharmacol. Therap.,20, 720–726.

    Google Scholar 

  • Gotch, F. A. (1976) Solute transport and ultrafiltration in haemodialysers. InClinical aspects of uremia and dialysis,Massry,S. G. andSellers,A. L. (Eds), Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Hall, K. R., Eagleton, L. C., Acrivos, A. andVermeulen, T. (1966) Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions.Ind. Eng. Chem. Fundam.,5, 212–223.

    Article  Google Scholar 

  • Hsieh, J. S. C., Turian, R. M. andTien, C. (1977) Multicomponent liquid phase adsorption in fixed beds.AIChE J.,23, 263–275.

    Article  Google Scholar 

  • Huang, W. (1974) Micro-encapsulation to control adsorption on activated carbon. PhD thesis, Washington University.

  • Klein, E. (Ed.) (1976) Evaluation of haemodialysers and dialysis membranes. Artificial kidney—chronic uremia program, NIAMDD, US National Institution of Health.

  • Levenspiel, O. andBischoff, K. B. (1963) Patterns of flow in chemical process vessels.Adv. Chem. Eng.,4, 95–298.

    Article  Google Scholar 

  • Miyauchi, T. andKikuchi, T. (1975) Axial dispersion in packed beds.Chem. Eng. Sci.,30, 343–348.

    Article  Google Scholar 

  • Radcliffe, D. F. (1978) Mass transfer in haemoperfusion columns and other sorbent based blood detoxification devices. PhD thesis, University of Strathclyde, Glasgow.

    Google Scholar 

  • Radcliffe, D. F. andGaylor, J. D. S. (1981) Sorption kinetics in haemoperfusion columns—Part 1 estimation of mass transfer parameters.Med. & Biol. Eng. & Comput.

  • Spahn, H. andSchlunder, E. V. (1975) The scale up of activated carbon columns for water purification based on results from batch tests—Part I.Chem. Eng. Sci.,30, 529–538.

    Article  Google Scholar 

  • Speckhart, F. H. andGreen, W. L. (1976)A guide to using CSMP. Prentice Hall.

  • Upadhyay, S. N. andTripathi, G. (1975) Liquid phase mass transfer in fixed bed and fluidized beds of large particles.J. Chem. Eng. Data,20, 20–26.

    Article  Google Scholar 

  • Vallner, J. J. (1977) Binding of drugs by albumin and plasma proteins.J. Pharm. Sci.,66, 447–465.

    Google Scholar 

  • Vermeulen, T. (1953) Theory of irreversible and constant pattern solid diffusion.Ind. Eng. Chem.,45, 1664–1670.

    Article  Google Scholar 

  • Weber, W. J. andMorris, J. C. (1963) Kinetics of adsorption on carbon from solution.ASCE J. Sanit. Eng. Div.,89, (SA2), 31–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radcliffe, D.F., Gaylor, J.D.S. Sorption kinetics in haemoperfusion columns. Part 2: modelling column performance. Med. Biol. Eng. Comput. 19, 627–637 (1981). https://doi.org/10.1007/BF02442778

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442778

Keywords

Navigation