Skip to main content
Log in

Numerical analysis of pressure and flow pulsations in a segment of the arterial tree

  • Published:
Medical and biological engineering Aims and scope Submit manuscript

Abstract

The arterial blood pressure and the rate of volume pulsations were measured experimentally as functions of time for a segment of the human arm. Using these curves and a type of identification program, common in control engineering, a mathematical model was calculated for the arterial tree included in the segment. This mathematical model led to the construction of an electrical analogue circuit for simulating the time-dependence of the rate of volume pulsations on the arterial pressure. In both cases the results show a close agreement between the simulated curves and the physiological curves determined experimentally. The inertia of blood and vessels is shown to be negligible, while non-linear compliances must be included when dealing with wide pressure ranges.

Sommaire

La pression du sang artériel et la proportion de pulsations du volume ont été mésurées expérimentalement comme fonctions de temps, pour un segment du bras humain. En utilisant ces courbes et un type de programme d'identification, commun dans les vérifications techniques, on a calculé un modèle mathématique pour l'arbre artériel inclu dans le segment. Ce modèle mathématique mena à la construction d'un circuit électrique analogue, pour simuler la dépendance du temps de la proportion de pulsations du volume sur la pression artérielle. Dans les deux cas les résultats montrent un accord étroit entre les courbes simulées et les courbes physiologiques déterminées expérimentalement. L'inertie du sang et des vaisseaux paraît être négligeable, tandis que les adaptations non-linéaires doivent être inclues quand on utilise des vastes rangées de pression.

Zusammenfassung

Der Arterienblutdruck und die Geschwindigkeit des Volumenpulsierens wurden experimentell für ein Segment des menschlichen Arms als Funktionen der Zeit gemessen. Unter verwendung dieser Kurven und einer Art von Identifizierungsprogramm, das in der Regeltechnik üblich ist, wurde ein mathematisches Modell für den, in das Segment eingeschlossenen Arterienbaum berechnet. Dieses mathematische Modell führte zu dem Entwurf einer analogen elektrischen Schaltung zur Nachahmung der zeitlichen Abhängigkeit der Geschwindigkeit des Raumpulsierens von dem Arteriendruck. In beiden Fällen geben die Resultate eine naheliegende Übereinstimmung zwischen den nachgeahmten Kurven und den experimentell ermittelten, physiologischen Kurven. Es wird gezeigt, dass die Trägheit von Blut und Gefässen unbedeutend ist, während nicht-lineare Nachgiebigkeit berücksichtigt werden muss, wenn es sich um grosse Druckbereiche handelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åström, K. J. (1968) Lectures on the identification problem—the least squares method.Report 6806, Sept 1968, Lund Inst. of Technology, Div. of Automatic Control.

  • Attinger, E. O. (Ed.) (1964)Pulsatile Blood Flow. McGraw-Hill, New York.

    Google Scholar 

  • Attinger, E. O. andAnné, A. (1966) Simulation of the cardiovascular system.Ann. N. Y. Acad. Sci. 128, 810–829.

    Google Scholar 

  • Attinger, E. O., Anné, A. andMcDonald, D. A. (1966) Use of Fourier series for the analysis of biological systems.Biophys. J. 6, 290–304.

    Article  Google Scholar 

  • Attinger, E. O. andSugawara, H. (1966) Pressure-flow relations in dog arteries.Circulation Res. 19, 230–245.

    Google Scholar 

  • Beneken, J. E. W. (1965)A Mathematical Approach to Cardio-Vascular Function. The Uncontrolled Human System. Inst. med. Phys. T.N.O., Utrecht Holland.

    Google Scholar 

  • Black, H. S. (1953)Modulation Theory, chapter 4. Van Nostrand, Princeton, N.J.

    MATH  Google Scholar 

  • Dahn, I., Jonson, B. andNilsén, R. (1970a) Plethysmographicin vivo determinations of elastic properties of arteries in man.J. appl. Physiol. 28, 328–332.

    Google Scholar 

  • Dahn, I., Jonson, B. andNilsén, R. (1970b) A plethysmographic method for determination of flow and volume pulsations in a limb.J. appl. Physiol. 28, 333–336.

    Google Scholar 

  • Goldwyn, R. M. andWatt, T. B. (1967) Arterial pressure pulse contour analysis via a mathematical model for the clinical quantificaton of human vascular properties.IEEE Trans. bio-med. Engng BME-14, 11–17.

    Google Scholar 

  • Jonson, B. andNilsén, R. (1969) Venous pulsations in the upper arm studied with plethysmographic technique.Scand. J. Clin. lab. Invest. 24, 131–140.

    Google Scholar 

  • Jonson, B., Karlsson, H. G. andNilsén, R. (1971) A model of the arterial tree with non-linear pressure volume relationship. To be published.

  • Jury (1964)Theory and Application of the z-Transform Method. Wiley, New York.

    Google Scholar 

  • Malindzak, G. S. Jr andStacy, R. W. (1965) Dynamic behaviour of a mathematical analog of the normal human arterial system.Am. J. med. Electron. 4, 28–34.

    Google Scholar 

  • Noordergraaf, A. (1962) Development of an analog computer for the human systemic circulatory system. In:Circulatory Analog Computers (Eds.Noordergraaf, J. Westerhof).Proc. of the Symp. on the Development of Analog Computers in the Study of the Mammalian Circulatory System, pp. 29–43.

  • O'Rourke, M. F. andTaylor, M. G. (1966) Vascular impedance of the femoral bed.Circulation Res. 18, 126–139.

    Google Scholar 

  • O'Rourke, M. F. (1967) Pressure and flow waves in systemic arteries and the anatomical design of the arterial system.J. appl. Physiol. 23, 139–149.

    Google Scholar 

  • Patel, D. I. andAusten, W. G. (1964) Impedance of certain large blood vessels in man.Ann. N. Y. Acad. Sci. 115, 1129–1139.

    Google Scholar 

  • Pater, De L. (1966)An Electrical Analogue of the Human Circulatory System. Laboratory for medical Physics, Rijks Universiteit, Bloemsingel, Groningen, Holland.

    Google Scholar 

  • Peterson, L. H., Jensen, R. E. andParnell, J. (1960) Mechanical properties of arteriesin vivo.Circulation Res. 8, 622–639.

    Google Scholar 

  • Porjé andRudewald (1957) Studies on a new theory of determination of some fundamental hemodynamic data in a circulation model in normal persons and in aortic valvular diseases.Opuscula Medica 2, 280–293.

    Google Scholar 

  • Rothe, C. F. andNash, F. D. (1968) Renal arterial compliance and conductance measurement using on-line self-adaptive analog computation of model parameters.Med. biol. Engng 6, 53–69.

    Google Scholar 

  • Schwartz, M. (1959)Information Transmission, Modulation, and Noise, p. 170. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Shinners, S. M. (1964)Control System Design, Chapter 9, Wiley, New York.

    Google Scholar 

  • Stacy, R. W. andGiles, F. M. (1959) Computer analysis of arterial properties.Circulation Res. 7, 1031–1038.

    Google Scholar 

  • Westerhof, N., Noordergraaf, A., Bosman, F. andde Vries, C. J. (1969) Analog studies of the human systemic arterial tree.J. Biochem. 2, 121–143.

    Google Scholar 

  • Wetterer, E. andKenner, T. (1968)Grundlagen der Dynamik des Arterienpylses. Springer-Verlag, Berlin.

    Google Scholar 

  • Womersley, J. R. (1957) An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Wright, Patterson AF Base, Wright Air Development Center,Tech. Rep. TR-56-614, Dayton, Ohio.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, H.G., Jonson, B. & Nilsén, R. Numerical analysis of pressure and flow pulsations in a segment of the arterial tree. Med. & biol. Engng. 9, 431–445 (1971). https://doi.org/10.1007/BF02474702

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02474702

Keywords

Navigation