Skip to main content
Log in

Influence of pressure on ionic transport in amorphous electrolytes: Comparison between glasses and salt polymer complexes

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Accurate conductivity measurements as a function of hydrostatic pressure (1 – 5000 bars) and temperature (20 – 150 °C) have been performed on a cationic inorganic glass and a cationic conducting polymer.

In both cases, the conductivity decreases with increasing pressure and the variation of Inσ at constant temperature as a function of pressure gives straight lines with slopes which allow an “activation volume”, ΔV*, to be obtained by the relationship (∂lnσ/∂P)T=− (ΔV*/RT). In the case of silver metaphosphate glass, studied below its glass transition temperature, the activation volume (5 cm3⋅mol−1) is temperature independent and equal to the molar volume of the silver cation. Since the transport mechanism implies a free energy barrier, this volume is a real activation volume, corresponding to the difference in volume between a mole of the moving species in its activated transition state and its volume at normal equilibrium.

In the case of the sodium conductive polymer, studied above its glass transition temperature, the previous thermodynamic definition does not hold any more because the ionic transport follows a V.T.F. behaviour rather than an Arrhenius law. Consequently, ΔV* is an “apparent activation volume” without a simple physical meaning. Experimental values are higher (20 to 30 cm3⋅mol−1) and decrease with temperature. In this polymer, the mobility of the charge carriers is interpreted in terms of free volume mechanism. From the variations of the apparent activation volume with temperature, the critical free volume Vf* for an elementary displacement is estimated. For the Na+ conductive ionomer Vf* is estimated to be equal to 13 cm3⋅mol−1. This large value would indicate the participation of macromolecular chain segments in the ionic transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

5. References

  1. A. Ascoli, in: “Fast Ion Transport in Solids”, ed. W. Van Gool (North Holland, Amsterdam, 1972) p. 81.

    Google Scholar 

  2. B.E. Mellander, Phys. Rev. B26, 5886 (1982).

    Article  CAS  Google Scholar 

  3. Y. Grincourt, M. Henault, M. Duclot and J-L. Souquet, Phys. Chem. Glasses37, 236 (1996).

    CAS  Google Scholar 

  4. B. Cleaver, S.I. Smedley and P.N. Spencer, Trans. Faraday Soc.69, 1720 (1972).

    Google Scholar 

  5. J.J. Fontanella, M.C. Wintersgill, J.P. Calame, F.P. Pursel, D.R. Figueroa, C.G. Andeen, Solid State Ionics9–10, 1139 (1983).

    Google Scholar 

  6. C. Bridges and A.V. Chadwick, Solid State Ionics28–30, 965 (1988).

    Google Scholar 

  7. F. Alloin, J. Bolton, J-L. Souquet and M. Duclot, Solid State Ionics110, 15 (1998).

    Article  CAS  Google Scholar 

  8. J. Brandrup, E.H. Immergut, in: “Polymer Handbook” 3rd ed., J. Wiley & Sons, New York (1989).

    Google Scholar 

  9. D. Benrabah, S. Sylla, F. Alloin, J.-Y. Sanchez and M. Armand, Electrochim. Acta40, 2259 (1995).

    CAS  Google Scholar 

  10. F. Alloin, D. Benrabah, J-Y. Sanchez, J. Power Sources68, 372 (1997).

    CAS  Google Scholar 

  11. J.M. Hutchinson, M.D. Ingram and A.H.J. Robertson, Phil. Mag. B66, 449 (1992).

    CAS  Google Scholar 

  12. Y. Oyama and J. Kawamura, Solid State Ionics53–56, 1221 (1992).

    Google Scholar 

  13. C.A. Angell and J. Zhou, Solid State Ionics34, 243 (1989).

    Article  CAS  Google Scholar 

  14. H. Vogel, Phys. Z.22, 645, (1921); G. Tamman, W. Hesse, Z. Anorg. Allg. Chem.156, 245 (1926); G.S. Fulcher, J. Am. Ceram. Soc.8, 339 (1925).

    CAS  Google Scholar 

  15. C.A. Angell, J. Phys. Chem.68, 218 (1964).

    CAS  Google Scholar 

  16. C.A. Angell, L.J. Pollard and W. Strauss, J. Chem. Phys.43, 2899 (1965).

    Article  CAS  Google Scholar 

  17. C.A. Angell, L.J. Pollard and W. Strauss, J. Chem. Phys.50, 2694 (1969).

    Article  CAS  Google Scholar 

  18. J.L. Souquet, M. Duclot, M. Levy, Solid State Ionics85, 149 (1996).

    Article  CAS  Google Scholar 

  19. S. Schantz, L.M. Torell, J.R. Stevens, J. Chem. Phys.94, 6862 (1991).

    CAS  Google Scholar 

  20. M. Kalihana, S. Schantz, L.M. Torell, J. Chem. Phys.92, 6271 (1990).

    Google Scholar 

  21. M.H. Cohen, D.T. Turnbull, J. Chem. Phys.31, 1164 (1959).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souquet, J.L., Alloin, F., Brylev, O. et al. Influence of pressure on ionic transport in amorphous electrolytes: Comparison between glasses and salt polymer complexes. Ionics 4, 1–7 (1998). https://doi.org/10.1007/BF02375773

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375773

Keywords

Navigation