Skip to main content
Log in

An inwardly rectifying potassium channel in the basolateral membrane of sheep parotid secretory cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Using whole-cell patch-clamp techniques, we demonstrate that sheep parotid secretory cells have both inwardly and outwardly rectifying currents. The outwardly rectifying current, which is blocked by 10 mmol/liter tetraethylammonium (TEA) applied extracellularly, is probably carried by the 250 pS Ca2+-and voltage-activated K+ (BK) channel which has been described in previous studies. In contrast, the inwardly rectifying current, which is also carried by K+ ions, is not sensitive to TEA. It is similar to the inwardly rectifying currents observed in many excitable tissues in that (i) its conductance is dependent on the square root of the extracellular K+, (ii) the voltage range over which it is activated is influenced by the extracellular K+ concentration and (iii) it is blocked by the addition of Cs+ ions (670 µmol/liter) to the bathing solution. Our previously published cell-attached patch studies have shown that the channel type most commonly observed in the basolateral membrane of unstimulated sheep parotid secretory cells is a K+ channel with a conductance of 30 pS and, in this study, we find that its conductance also depends on the square root of the extracellular K+ concentration. It thus seems likely that it carries the inwardly rectifying K+ current seen in the whole-cell studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry, P.H., Lynch, J.W. 1991. Liquid junction potentials and small cell effects in patch clamp analysis.J. Membrane Biol. 121:101–117

    Article  Google Scholar 

  2. Bechem, M., Glitsch, H.G., Pott, L. 1983. Properties of an inward rectifying K channel in the membrane of guinea-pig atrial cardioballs.Pfluegers Arch. 399:186–193

    Article  Google Scholar 

  3. Bezanilla, F. 1985. A high capacity data recording device based on a digital audio processor and a video cassette recorder.Biophys. J. 47:437–441

    PubMed  Google Scholar 

  4. Brismar, T., Collins, V.P. 1989. Inward rectifying potassium channels in human malignant glioma cells.Brain Res. 480:249–258

    Article  PubMed  Google Scholar 

  5. Burgen, A.S.V. 1956. The secretion of potassium in saliva.J. Physiol. 132:20–39

    PubMed  Google Scholar 

  6. Coats, D.A., Denton, D.A., Goding, J.R., Wright, R.D. 1956. Secretion by the parotid gland of the sheep.J. Physiol. 131:13–31

    PubMed  Google Scholar 

  7. Compton, J.S., Nelson, J., Wright, R.D., Young, J.A. 1980. A micropuncture investigation of electrolyte transport in the parotid glands of sodium-replete and sodium-depleted sheep.J. Physiol. 309:429–446

    PubMed  Google Scholar 

  8. Cook, D.I., Young, J.A. 1989. Effect of K+ channels in the apical plasma membrane on epithelial secretion based on secondary active Cl transport.J. Membrane Biol. 110:139–146

    Article  Google Scholar 

  9. Cook, D.I., Young, J.A. 1989. Fluid and electrolyte secretion by salivary glands.In: Handbook of Physiology. The Gastrointestinal System. Salivary, Pancreatic, Gastric and Hepatobiliary Secretion. J.G. Forte, editor. Section 6, Volume III, pp. 1–23. American Physiological Society, Bethesda.

    Google Scholar 

  10. Cook, D.I., Young, J.A. 1990. Cation channels and secretion.In: Epithelial Secretion of Water and Electrolytes. J.A. Young and P.Y.D. Wong, editors. pp. 15–38. Springer-Verlag, Heidelberg.

    Google Scholar 

  11. Cook, D.I., Wegman, E.A., Ishikawa, T., Young, J.A. 1990. Cation channels in the parotid and mandibular glands of the sheep.In: Exocrine Secretion II. P.Y.D. Wong, J.A. Young, editors. pp. 35–38. ISES, Hong Kong.

    Google Scholar 

  12. Cook, D.I., Wegman, E.A., Ishikawa, T., Poronnik, P., Read, A.M., Titchen, D.A., Allen, D.G., Young, J.A. 1992. TEA blocks muscarinically evoked secretion in the sheep parotid gland by a mechanism additional to its blockade of BK channels.Pfluegers Arch. 420:167–171

    Article  Google Scholar 

  13. Cooper, K., Rae, J.L., Dewey, J. 1991. Inwardly rectifying potassium current in mammalian lens epithelial cells.Am. J. Physiol. 261:C15-C23

    Google Scholar 

  14. Hagiwara, S., Takahashi, K. 1974. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell.J. Membrane Biol. 18:61–80

    Article  Google Scholar 

  15. Halliwell, J.V., Adams, P.R. 1982. Voltage-clamp analysis of muscarinic excitation in hippocampal neurons.Brain Res. 250:71–92

    Article  PubMed  Google Scholar 

  16. Hamill, O.P., Marty, A., Neher, A., Sakmann, B., Sigworth, F. S. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell free membrane patches.Pfluegers Arch. 391:85–100

    Article  Google Scholar 

  17. Henderson, S., Graf, J., Boyer, J.L. 1989. Inward-rectifying potassium channels in rat hepatocytes.Am. J. Physiol. 256:G1028-G1035

    PubMed  Google Scholar 

  18. Hirst, G.D.S., Edwards, F.R. 1989. Sympathetic neuroeffector transmission in arteries and arterioles.Physiol. Rev. 69:546–604

    PubMed  Google Scholar 

  19. Hume, J.R., Uehara, A., 1985. Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes.J. Physiol. 368:525–544

    PubMed  Google Scholar 

  20. Hunter, M., Oberleithner, H., Henderson, R.M., Giebisch, G. 1988. Whole-cell potassium currents in single early distal tubule cells.Am. J. Physiol. 255:F699-F703

    PubMed  Google Scholar 

  21. Iwatsuki, N., Petersen, O.H. 1985. Action of tetraethylammonium on calcium-activated potassium channels in pig pancreatic acinar cells studied by patch-clamp single-channel and whole-cell current recording.J. Membrane Biol. 86:139–144

    Article  Google Scholar 

  22. Kurachi, Y. 1985. Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea-pig heart.J. Physiol. 366:365–385

    PubMed  Google Scholar 

  23. Maruyama, Y., Petersen, O.H., Flanagan, P., Pearson, G.T. 1983. Quantification of Ca2−-activated K+ channels under hormonal control in pig pancreas acinar cells.Nature 305:228–232

    Article  PubMed  Google Scholar 

  24. Matsuda, H. 1991. Magnesium gating of the inwardly rectifying K+ channel.Annu. Rev. Physiol. 53:289–298

    Article  PubMed  Google Scholar 

  25. McKinney, L.C., Gallin, E.K. 1988. Inwardly rectifying whole-cell and single-channel K currents in the murine macrophage cell line J774. 1.J. Membrane Biol. 103:41–53

    Article  Google Scholar 

  26. McLarnon, J.G., Kim, S.U. 1989. Single channel potassium currents in cultured adult bovine oligodendrocytes.Glia 2:298–307

    Article  PubMed  Google Scholar 

  27. Ohmori, H., Yoshida, S., Hagiwara, S., 1981. Single K+ channel currents of anomalous rectification in cultured rat myotubes.Proc. Natl. Acad. Sci. USA 78:4960–4964

    PubMed  Google Scholar 

  28. Petersen, O.H., Gallacher, D.V. 1988. Electrophysiology of pancreatic and salivary acinar cells.Annu. Rev. Physiol. 50:65–80

    Article  PubMed  Google Scholar 

  29. Sakai, H., Okada, Y., Morii, M., Takeguchi, N. 1989. Anion and cation channels in the basolateral membrane of rabbit parietal cells.Pfluegers Arch. 414:185–192

    Article  Google Scholar 

  30. Sakmann, B., Trube, G. 1984. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart.J. Physiol. 347:641–657

    PubMed  Google Scholar 

  31. Sepulveda, F.V., Fargon, F., McNaughton, P.A. 1991. K+ and Cl currents in enterocytes isolated from guinea-pig small intestinal villi.J. Physiol. 434:351–3677

    PubMed  Google Scholar 

  32. Sims, S.M., Dixon, S.J. 1989. Inwardly rectifying K+ current in osteoclasts.Am. J. Physiol. 256:C1277-C1282

    PubMed  Google Scholar 

  33. Takahashi, T. 1990. Inward rectification in neonatal rat spinal motoneurones.J. Physiol. 423:47–62

    PubMed  Google Scholar 

  34. Wright, R.D., Blair-West, J.R. 1990. The effects of K+ channel blockers on ovine parotid secretion depend on the mode of stimulation.Exp. Physiol. 75:339–348

    PubMed  Google Scholar 

  35. Wright, R.D., Blair-West, J.R., Nelson, J.F. 1986. Effects of ouabain, amiloride, monensin, and other agents on ovine parotid saliva.Am. J. Physiol. 250:F503-F510

    PubMed  Google Scholar 

  36. Yanagihara, K., Irisawa, H. 1980. Inward current activated during hyperpolarization in the rabbit sinoatrial node cell.Pfluegers Arch. 385:11–19

    Article  Google Scholar 

  37. Young, J.A., Cook, D.I., Van Lennep, E.W., Roberts, M.L. 1987. Secretion by the major salivary glands.In: Physiology of the Gastrointestinal Tract. L. Johnson, J. Christensen, M. Jackson, E. Jacobson, J. Walsh, editors. Volume 2, 2nd Edition, pp. 773–815. Raven, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, T., Wegman, E.A. & Cook, D.I. An inwardly rectifying potassium channel in the basolateral membrane of sheep parotid secretory cells. J. Membrain Biol. 131, 193–202 (1993). https://doi.org/10.1007/BF02260108

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02260108

Key Words

Navigation