Skip to main content
Log in

Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Stationary electrical conductance experiments together with nonstationary relaxation experiments allow a quantitative determination of rate constants describing carrier-mediated ion transport. Valinomycin-induced ion transport across neutral lipid membranes was studied. The dependence of the transport parameters on the chain length of the lipid molecules, on the kind of alkali ion, and on the temperature was determined. The relaxation time τ the current following a voltage jump shows a marked increase with decreasing temperature or with increasing chain length of the lipid molecules. This variation of τ is interpreted on the basis of a varying membrane fluidity. It is shown that under favorable circumstances the equilibrium constant of complex formation in the aqueous phase may be obtained from membrane experiments. Furthermore, the kinetics of exchange of valinomycin between membrane and water was studied. We found a marked influence of the totus surrounding the black film on the kinetics as well as on the total amount of valinomycin molecules in the membrane. The problem of location of the free carrier molecules inside the membrane is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreoli, T. E., Tieffenberg, M., Tosteson, D. C. 1967. The effect of valinomycin on the ionic permeability of thin lipid membranes.J. Gen. Physiol. 50:2527

    PubMed  Google Scholar 

  • Baer, F., Buchnea, D. 1959. Synthesis of saturated and unsaturatedl-α-lecithins.Canad. J. Biochem. Physiol. 37:953

    PubMed  Google Scholar 

  • Bounds, D. G., Linstead, R. P., Weedon, B. C. L. 1954. Anodic syntheses. Part X. Synthesis of nervonic (selacholeic) acid.J. Chem. Soc. 1954:448

    Google Scholar 

  • Carlslaw, H. S., Jaeger, J. C. 1959. Conduction of Heat in Solids. p. 101. Clarendon Press, Oxford

    Google Scholar 

  • Ciani, S., Eisenman, G., Szabo, G. 1969. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electrical properties of bilayer membranes.J. Membrane Biol. 1:1

    Google Scholar 

  • Ciani, S., Laprade, R., Eisenman, G., Szabo, G. 1973. Theory for carrier-mediated zerocurrent conductance of bilayers extended to allow for nonequilibrium of interfacial reactions, spatially dependent mobilities and barrier shape.J. Membrane Biol. 11:255

    Google Scholar 

  • Eisenman, G., Ciani, S. M., Szabo, G. 1968. Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions.Fed. Proc. 27:1289

    PubMed  Google Scholar 

  • Eisenman, G., Szabo, G., McLaughlin, S. G. A., Ciani, S. M. 1972. Molecular basis for the action of macrocyclic antibiotics on membranes.In: Proceedings of the Symposium on Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes. E. Munoz, F. Garcia Ferrandiz and D. Vazquez, editors. p. 545. Elsevier Publishing Co., Amsterdam

    Google Scholar 

  • Fettiplace R., Andrews, D. M., Haydon, D. A. 1971. The thickness, composition and structure of some lipid bilayers and natural membranes.J. Membrane Biol. 5:277

    Article  Google Scholar 

  • Grell, E., Funck, T., Eggers, F. 1972. Dynamic properties and membrane activity of ion specific antibiotics.In: Proceedings of the Symposium on Molecular Mechanism of Antibiotic Action on Protein Biosynthesis and Membranes. E. Munoz, F. Garcia Ferrandiz and D. Vazquez, editors. p. 646. Elsevier Publishing Co., Amsterdam

    Google Scholar 

  • Hall, J. E., Mead, C. A., Szabo, G. 1973. A barrier model for current flow in lipid bilayer membranes.J. Membrane Biol. 11:75

    Google Scholar 

  • Haydon, D. A., Hladky, S. B. 1972. Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems.Quart. Rev. Biophys. 5:187

    Google Scholar 

  • Hladky, S. B. 1972. The steady-state theory of the carrier transport of ions.J. Membrane Biol. 10:67

    Google Scholar 

  • Hladky, S. B. 1973. The effect of stirring on the flux of carriers into black lipid membranes.Biochim. Biophys. Acta 307:261

    PubMed  Google Scholar 

  • Ketterer, B., Neumcke, B., Läuger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225

    Google Scholar 

  • Krasne, S., Eisenman, G., Szabo G. 1971. Freezing and melting of bilayers and the mode of action of nonactin, valinomycin and gramicidin.Science 174:412

    PubMed  Google Scholar 

  • Läuger, P., Stark, G. 1970. Kinetics of carrier-mediated ion transport across lipid bilayer membranes.Biochim. Biophys. Acta 211:458

    PubMed  Google Scholar 

  • Lev, A. A., Buzhinsky, E. P. 1967. Cation specificity of the model bimolecular phospholipid membranes with incorporated valinomycin.Tsitologiya 9:102

    Google Scholar 

  • Liberman, E. A., Topaly, V. P. 1968. Selective transport of ions through bimolecular phospholipid membranes.Biochim. Biophys. Acta 163:125

    PubMed  Google Scholar 

  • Markin, V. S., Kristalik, L. I., Liberman, E. A., Topaly, V. P. 1969. Mechanism of conductivity of artificial phospholipid membranes in presence of ion carriers.Biofizika 14:256

    PubMed  Google Scholar 

  • Mueller, P., Rudin, D. O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398

    PubMed  Google Scholar 

  • Neumcke, B., Läuger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equation.Biophys. J. 9:1160

    PubMed  Google Scholar 

  • Pressman, B. C. 1968. Ionophorous antibiotics as models for biological transport.Fed. Proc. 27:1283

    PubMed  Google Scholar 

  • Shemyakin, M. M., Ovchinnikov, Yu. A., Ivanov, V. T., Antonov, V. K., Vinogradova, E. I., Shkrob, A. M., Malenkov, G. G., Evstratov, A. V., Laine, I. A., Melnik, E. I., Ryabova, I. D. 1969. Cyclodepsipeptides as chemical tools for studying ionic transport through membranes.J. Membrane Biol. 1:402

    Google Scholar 

  • Stark, G. 1973. Rectification phenomena in carrier mediated ion transport.Biochim. Biophys. Acta 298:323

    PubMed  Google Scholar 

  • Stark, G., Benz, R. 1971. The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin.J. Membrane Biol. 5:133

    Google Scholar 

  • Stark, G., Benz, R., Pohl, G., Janko, K. 1972. Valinomycin as a probe for the study of structural changes of black lipid membranes.Biochim. Biophys. Acta 266:603

    PubMed  Google Scholar 

  • Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.Biophys. J. 11:981

    PubMed  Google Scholar 

  • Szabo, G., Eisenman, G., Ciani, S. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 1:346

    Google Scholar 

  • White, S. H. 1970. A study of lipid bilayer membrane stability using precise measurements of specific capacitance.Biophys. J. 10:1127

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benz, R., Stark, G., Janko, K. et al. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature. J. Membrain Biol. 14, 339–364 (1973). https://doi.org/10.1007/BF01868084

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868084

Keywords

Navigation