Skip to main content
Log in

Substrate Selectivity and pH Dependence of KAAT1 Expressed in Xenopus laevis Oocytes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract.

When expressed in Xenopus oocytes KAAT1 increases tenfold the transport of l-leucine. Substitution of NaCl with 100 mm LiCl, RbCl or KCl allows a reduced but significant activation of l-leucine uptakes. Chloride-dependence is not strict since other pseudohalide anions such as thyocyanate are accepted. KAAT1 is highly sensitive to pH. It can transport l-leucine at pH 5.5 and 8, but the maximum uptake has been observed at pH 10, near to the physiological pH value, when amino and carboxylic groups are both deprotonated. The pH value mainly influences the V max in Na+ activation curves and l-leucine kinetics. The kinetic parameters are K mNa = 4.6 ± 2 mm, V maxNa = 14.8 ± 1.7 pmol/oocyte/5 min for pH 8.0 and K mNa = 2.8 ± 0.7 mm, V maxNa = 31.3 ± 1.9 pmol/oocyte/5 min for pH 10.0. The kinetic parameters of l-leucine uptake are: K m = 120.4 ± 24.2 μm, V max = 23.2 ± 1.4 pmol/oocyte/5 min at pH 8.0 and K m = 81.3 ± 24.2 μm, V max = 65.6 ± 3.9 pmol/oocyte/5 min at pH 10.0.

On the basis of inhibition experiments, the structural features required for KAAT1 substrates are: (i) a carboxylic group, (ii) an unsubstituted α-amino group, (iii) the side chain is unnecessary, if present it should be uncharged regardless of length and ramification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 27 April 1999/Revised: 10 January 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincenti, S., Castagna, M., Peres, A. et al. Substrate Selectivity and pH Dependence of KAAT1 Expressed in Xenopus laevis Oocytes. J. Membrane Biol. 174, 213–224 (2000). https://doi.org/10.1007/s002320001046

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002320001046

Navigation