Skip to main content
Log in

Passage of inulin andp-aminohippuric acid through artificial membranes: Implications for measurement of renal function

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Diffusion of inulin andp-aminohippuric acid (PAH) in combined aqueous solution through artificial membranes was measured at room temperature and atmospheric pressure. The membranes had pore diameters of 26, 50, 100, 200, 250, 350, 510 or 990 Å. The diffusion of PAH was only restricted with a pore size of 26 Å, but inulin diffusion was restricted at 100 Å. When diffusion of both solutes was unrestricted (pore diameter ≧200 Å), PAH diffused four times faster than inulin, and in restricted situations this ratio was even greater. The results of these diffusion studies allow the major and minor molecular dimensions of the solutes to be estimated. Filtration of the two solutes was studied in slowly flowing situations and also with increased temperature and pressure. Pore sizes required for unrestricted filtration were the same as for unrestricted diffusion but the passage ratio was reduced from 4 to 2. These results suggest strongly that two conditions are necessary if the glomerular filtration rate (GFR) of inulin is to equal the true GFR: membrane pore size must be at least 200 Å and passage through the membranes must be by bulk transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacon, J. S. D., Bell, D. J. 1948. Fructose and glucose in the blood of foetal sheep.Biochem. J. 42:397

    Google Scholar 

  • Bean, C. P. 1972. The physics of porous membranes-neutral pores.In: Membranes. Vol. 1, Macroscopic Systems and Models. G. Eisenman, editor. Marcel Dekker, New York

    Google Scholar 

  • Berglund, F. 1964. Reabsorption of inorganic sulfate by the renal tubules of the rat.Acta Physiol. Scand. 62:336

    Google Scholar 

  • Berglund, F. 1965. Renal clearances of inulin, polyfructosan-s and a polyethylene glycol (PEG 1000) in the rat.Acta Physiol. Scand. 64:238

    Google Scholar 

  • Berglund, F. 1968. Renal excretion and volume of distribution of polyethylene glycol (PEG) in the rat and dog.Acta Physiol. Scand. 73:20A

    Google Scholar 

  • Berglund, F., Engberg, A., Persson, E., Ulfendahl, H. 1969. Renal clearances of labelled inulin (inulin-carboxyl-14C, inulin-methoxy-3H) and a polyethylene glycol (PEG 1000) in the rat.Acta Physiol. Scand. 76:458

    Google Scholar 

  • Bott, P. A. 1952. Renal excretion of creatinine inNecturus. A reinvestigation by the direct analysis of glomerular and tubular fluid for creatinine and inulin.Amer. J. Physiol. 168:107

    Google Scholar 

  • Bratton, A. C., Marshall, E. K. 1939. A new coupling component for sulfanilamide.J. Biol. Chem. 128:537

    Google Scholar 

  • Bunim, J. J., Smith, W. W., Smith, H. W. 1937. The diffusion coefficient of inulin and other substances of interest in renal physiology.J. Biol. Chem. 118:667

    Google Scholar 

  • Chinard, F. P. 1952. Derivation of an expression for the rate of formation of glomerular fluid (GFR). Applicability of certain physicochemical concepts.Amer. J. Physiol. 171:578

    Google Scholar 

  • Dietschy, J. M., Sallee, V. L., Wilson, F. A. 1971. Unstirred water layers and absorption across the intestinal mucosa.Gastroenterology 61:932

    Google Scholar 

  • Galey, W. R., Van Bruggen, J. T. 1970. The coupling of solute fluxes in membranes.J. Gen. Physiol. 55:220

    Google Scholar 

  • Gary-Bobo, C. M., Solomon, A. K. 1971. Effect of geometrical and chemical constraints on water flux across artificial membranes.J. Gen. Physiol. 57:610

    Google Scholar 

  • Giebisch, G. 1956. Measurements of pH, chloride and inulin concentration in proximal tubule fluid ofNecturus.Amer. J. Physiol. 185:171

    Google Scholar 

  • Hendrix, J. P., Westfall, B. B., Richards, A. N. 1936. Quantitative studies of the composition of glomerular urine. XIV. The glomerular excretion of inulin in frogs andNecturi.J. Biol. Chem. 116:735

    Google Scholar 

  • Jørgensen, K. E., Møller, J. V., Sheikh, M. I. 1972. The glomerular filterability of inulin and of different molecular weight preparations of polyethylene glycol in the rabbit.Acta Physiol. Scand. 84:408

    Google Scholar 

  • Katchalsky, A., Kedem, O. 1962. Thermodynamics of flow processes in biological systems.Biophys. J. 2:53s

    Google Scholar 

  • Kaufmann, T. G., Leonard, E. F. 1968. Studies of intramembrane transport: A phenomenological approach.J. Amer. Inst. Chem. Engrn. 14:110

    Google Scholar 

  • Kedem, O., Katchalsky, A. 1958. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.Biochim. Biophys. Acta 27:229

    Google Scholar 

  • Lassiter, W. E., Gottschalk, C. W., Mylle, L. M. 1961. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney.Amer. J. Physiol. 200:1139

    Google Scholar 

  • Mogensen, C. E. 1968. Chromatographic evidence by Sephadex gel filtration of the unrestricted glomerular filtration of inulin.Scand. J. Clin. Lab. Invest. 22:203

    Google Scholar 

  • Navar, L. G. 1970. Minimal preglomerular resistance and calculation of normal glomerular pressure.Amer. J. Physiol. 219:1658

    Google Scholar 

  • Pappenheimer, J. R. 1955. Über die Permeabilität der Glomerulum-Membranen in die Niere.Klin. Wschr. 33:362

    Google Scholar 

  • Phelps, C. F. 1965. The physical properties of inulin solutions.Biochem. J. 95:41

    Google Scholar 

  • Pitts, R. F. 1951. Physiology of the Kidney and Body Fluids. Year Book Medical Publishers, Chicago, p. 56

    Google Scholar 

  • Renkin, E. M. 1954. Filtration, diffusion and molecular sieving through porous cellulose membranes.J. Gen. Physiol. 38:225

    Google Scholar 

  • Renkin, E. M., Gilmore, J. P. 1973. Glomerular filtration.In: Handbook of Physiology, J. Orloff and R. W. Berliner, editors. Sect. 8, Renal Physiology. American Physiological Society, Washington, D.C.

    Google Scholar 

  • Richardson, I. W., Ličko, V., Bartoli, E. 1973. The nature of passive flows through tightly folded membranes.J. Membrane Biol. 11:293

    Google Scholar 

  • Shaffer, C. B., Critchfield, F. H., Carpenter, C. P. 1948. Renal excretion and volume distribution of some polyethylene glycols in the dog.Amer. J. Physiol. 152:93

    Google Scholar 

  • Starzak, M. E. 1973. Properties of membrane stationary states. I. The microcanonical membranes.J. Membrane Biol. 13:37

    Google Scholar 

  • Stein, W. D., Nir, S. 1971. On the mass dependence of diffusion within biological membranes and polymers.J. Membrane Biol. 5:246

    Google Scholar 

  • Stender, S., Kristensen, K., Skadhauge, E. 1973. Solvent drag by solvent-linked water flow. A theoretical examination.J. Membrane Biol. 11:377

    Google Scholar 

  • Verniory, A., Du Bois, R., Decoodt, P., Gassee, J. P., Lambert, P. P. 1973. Measurement of the permeability of biological membranes.J. Gen. Physiol. 62:489

    Google Scholar 

  • Walker, A. M., Bott, P. A., Oliver, J., Macdowell, M. C. 1936. Collection and analysis of fluid from single nephrons of mammalian kidney.Amer. J. Physiol. 134:580

    Google Scholar 

  • Walser, M., Davidson, D. G., Orloff, J. 1955. The renal clearance of alkali-stable inulin.J. Clin. Invest. 34:1520

    Google Scholar 

  • Wesson, L. G. 1969. Physiology of the Human Kidney. Grune & Stratton, New York & London, pp. 82–93

    Google Scholar 

  • Winne, D. 1973. Unstirred layer, source of biased Michaelis constant in membrane transport.Biochim. Biophys. Acta 298:27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middleton, E. Passage of inulin andp-aminohippuric acid through artificial membranes: Implications for measurement of renal function. J. Membrain Biol. 20, 347–363 (1975). https://doi.org/10.1007/BF01870643

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870643

Keywords

Navigation