Skip to main content
Log in

Dielectric saturation of the aqueous boundary layers adjacent to charged bilayer membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The surface charge density resulting from the adsorption of hydrophobic anions of dipicrylamine onto dioleyl-lecithin bilayer membranes has been measured directly using a high field pulse method. The surface charge density increases linearly with adsorbate concentration in the water until electrostatic repulsion of impinging hydrophobic ions by those already adsorbed becomes appreciable. Then Gouy-Chapman theory predicts that surface charge density will increase sublinearly, with the power [z +/(z ++2)] of the adsorbate concentration, wherez + is the cation valence of the indifferent electrolyte screening the negatively charged membrane surface. The predicted 1/3 and 1/2 power laws for univalent and divalent cations, respectively, have been observed in these experiments using Na+, Mg++, and Ba++ ions. Gouy-Chapman theory predicts further that the change from linear to sublinear dependence takes place at a surface charge density governed by the static dielectric constant of water and the concentration of indifferent electrolyte. Quantitative agreement with experiment is obtained at electrolyte concentrations of 10−4 m and 10−3 m, but can be maintained at higher concentrations only if the aqueous dielectric constant is decreased. A transition field model is proposed in which the Gouy-Chapman theory is modified to take account of dielectric saturation of water in the intense electric fields adjacent to charged membrane surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O., Feldberg, S., Nakadomari, H., Levy, S., McLaughlin, S. 1977. Electrostatic potentials associated with the absorption of tetraphenylborate into lipid bilayer membranes.In. Ion Transport Across Membranes. D.C. Tosteson, Yu.A. Ovchinnikov and R. Latorre, editors. p. 325. Raven Press, New York

    Google Scholar 

  • Andersen, O.S., Fuchs, M. 1975. Potential energy barriers to ion transport within lipid bilayers.Biophys. J. 15:795

    PubMed  Google Scholar 

  • Aveyard, R., Haydon, D.A. 1973. An Introduction to the Principles of Surface Chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  • Barthel, J., Schmithals, F., Behret, H. 1970. Untersuchungen zur Dispersion der komplexen Dielektrizitäts-Konstante wäßriger und nichtwäßriger Elektrolytlösungen.Z. Phys. Chem. (Frankfurt am Main) 71:115

    Google Scholar 

  • Booth, F. 1951. The dielectric constant of water and the saturation effect.J. Chem. Phys. 19:391, 1327, 1615

    Google Scholar 

  • Böttcher, C.J.F. 1973. Theory of Electric Polarization (2nd Ed.). Vol. 1, Ch. VII. Elsevier Scientific, Amsterdam

    Google Scholar 

  • Bruner, L.J. 1975. The interaction of hydrophobic ions with lipid bilayer membranes.J. Membrane Biol. 22:125

    Google Scholar 

  • Bruner, L.J. 1977. Self-limited adsorption of ions onto bilayer membrane surfaces.In: Ion Transport Across Membranes. D.C. Tosteson, Yu.A. Ovchinnikov and R. Latorre, editors. p. 91. Raven Press, New York

    Google Scholar 

  • Carroll, B.J., Haydon, D.A. 1975. Electrokinetic and surface potentials at liquid interfaces.J. Chem. Soc. Faraday Trans. 1. 71:361

    Google Scholar 

  • Cohen, L.A. 1970. Chemical modification as a probe of structure and function.In: The Enzymes (3rd Ed.). P.D. Boyer, editor. Vol. 1, Ch. 3. Academic Press, New York

    Google Scholar 

  • Conway, B.E., Bockris, J.O'M., Ammar, I.A. 1951. The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solution.Trans. Faraday Soc. 47:756

    Google Scholar 

  • Davies, M. 1971. Electric field effects in biomolecular systems.Acta Phys. Pol. A40:561

    Google Scholar 

  • Davies, M. 1976. Some aspects of recent high electric field studies in molecular systems.Acta Phys. Pol. A50:241

    Google Scholar 

  • Gaboriaud, R. 1966. Sur le compartement des acides non chargés dans les milieux eauméthanol.C. R. Acad. Sci. Ser. C 263:991

    Google Scholar 

  • Giese, K., Kaatze, U., Pottel, R. 1970. Permittivity and dielectric and proton magnetic relaxation of aqueous solutions of the alkali halides.J. Phys. Chem. 74:3718

    Google Scholar 

  • Grahame, D.C. 1947. The electrical double layer and the theory of electrocapillarity.Chem. Rev. 41:441

    Article  Google Scholar 

  • Grahame, D.C. 1950. Effects of dielectric saturation upon the diffuse double layer and the free energy of hydration of ions.J. Chem. Phys. 18:903

    Google Scholar 

  • Hasted, J.B. 1973. Aqueous Dielectrics. Ch. 2. Chapman and Hall, London

    Google Scholar 

  • Haydon, D.A., Myers, V.R. 1973. Surface charge, surface dipoles and membrane conductance.Biochim. Biophys. Acta 307:429

    PubMed  Google Scholar 

  • Ketterer, B., Neumcke, B., Läuger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225

    Google Scholar 

  • Kirkwood, J.G. 1939. The dielectric polarization of polar liquids.J. Chem. Phys. 7:911

    Google Scholar 

  • Klotz, I.M., Stellwagen, E.C., Stryker, V.H. 1964. Ionic equilibria in protein conjugates: Comparison of proteins.Biochim. Biophys. Acta 86:122

    PubMed  Google Scholar 

  • Kolodziej, H.A., Parry-Jones, G., Davies, M. 1975. High field dielectric measurements in water.J. Chem. Soc. Faraday Trans. 2 71:269

    Google Scholar 

  • Levine, S., Mingins, J., Bell, G.M. 1967. The discrete-ion effect in ionic double-layer theory.J. Electroanal. Chem. 13:280

    Google Scholar 

  • Malmberg, C.G., Maryott, A.A. 1956. Dielectric constant of water from 0° to 100°C.J. Res. Nat. Bur. Stand. 56:1

    Google Scholar 

  • McClellan, A.L. 1974. Tables of Experimental Dipole Moments. Vol. 2, p. 25. Rahara Enterprises, El Cerrito, Calif.

    Google Scholar 

  • McLaughlin, S. 1972. The mechanism of action of DNP on phospholipid bilayer membranes.J. Membrane Biol. 9:361

    Google Scholar 

  • McLaughlin, S.G.A., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667

    PubMed  Google Scholar 

  • McLaughlin, S.G.A., Szabo, G., Eisenman, G., Ciani, S.M. 1970. Surface charge and the conductance of phospholipid membranes.Proc. Nat. Acad. Sci. USA 67:1268

    PubMed  Google Scholar 

  • Muller, R.U., Finkelstein, A. 1972. The effect of surface charge on the voltage-dependence conductance induced in thin lipid membranes by monazomycin.J. Gen. Physiol. 60:285

    PubMed  Google Scholar 

  • Onsager, L. 1936. Electric moments of molecules in liquids.J. Am. Chem. Soc. 58:1486

    Google Scholar 

  • Querry, M.R., Curnutte, B., Williams, D. 1969. Refractive index of water in the infrared.J. Opt. Soc. Am. 59:1299

    Google Scholar 

  • Robinson, R., Levine, S. 1973. The discreteness-of-charge effect at charged aqueous interfaces. III. Smoothly varying dielectric constant in inner region at mercury interface.J. Electroanal. Chem. Interfacial Electrochem. 47:395

    Google Scholar 

  • Schwarzenbach, G. 1970. Electrostatic and non-electrostatic contributions to ion association in solution.Pure Appl. Chem. 24:307

    Google Scholar 

  • Tanford, C. 1962. The interpretation of hydrogen ion titration curves of proteins.Adv. Protein Chem. 17:69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C.C., Bruner, L.J. Dielectric saturation of the aqueous boundary layers adjacent to charged bilayer membranes. J. Membrain Biol. 38, 311–331 (1978). https://doi.org/10.1007/BF01870149

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870149

Keywords

Navigation