Skip to main content
Log in

Electrochemical investigation of active malic acid transport at the tonoplast into the vacuoles of the CAM plantKalanchoë daigremontiana

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The membrane potential of cells in leaf slices of the CAM plantKalanchoë daigremontiana Hamet et Perrier in the light and in the dark is −200 mV on the average; it is reversibly depolarized by the metabolic inhibitors FCCP (5×10−6 m) and CN (5×10−3 m); it shows the light-dependent transient oscillations ubiquitously observed in green cells; it is independent of the amount of malic acid accumulated in the cells (in a tested range between 30 and 140mm); and it is considerably hyperpolarized by the fungal toxin fusicoccin (30×10−6 m). Fusicoccin inhibits nocturnal malic acid accumulation in intact isolated phyllodia of the CAM plantKalanchoë tubiflora (Harv.) Hamet but does not affect remobilization of malic acid during the day.

Electrochemical gradients for the various ions resulting from dissociation of malic acid, i.e., H+, Hmal and mal2−, were calculated using the Nernst equation. With a very wide range of assumptions on cytoplasmic pH and malate concentration results of calculations suggest uphill transport of H+ and Hmal from the cytoplasm into the vacuole, while mal2− might be passively distributed at the tonoplast. On the basis of the present data the most likely mechanism of active malic acid accumulation in the vacuoles of CAM plants appears to be an active H+ transport at the tonoplast coupled with passive movement of mal2− possibly mediated by a translocator (“catalyzed diffusion”), with subsequent formation of Hmal (2 H++mal2−→H++Hmal) at vacuolar pH's.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auzac, J. d'. 1975. Caracterisation d'une ATPase membranaire en présence d'une phosphatase acide dans les lutoïdes du latex d'Hevea brasiliensis.Phytochemistry 14:671

    Google Scholar 

  • Auzac, J. d'. 1977. ATPase membranaire de vacuoles lysosomales: les lutoïdes du latex d'Hevea brasiliensis.Phytochemistry 16:1881

    Google Scholar 

  • Bentrup, F.W. 1974. Lichtabhängige Membranpotentiale bei Pflanzen.Ber. Dtsch. Bot. Ges. 87:515

    Google Scholar 

  • Bollig, I.C., Wilkins, M.B. 1979. Inhibition of the circadian rhythm of CO2 metabolism inBryophyllum leaves by cycloheximide and dinitrophenol.Planta 145:105

    Google Scholar 

  • Bowling, D.J.F. 1976. Malate switch hypothesis to explain the action of stomata.Nature (London) 262:393

    Google Scholar 

  • Buser, Ch., Matile, Ph. 1977. Malic acid in vacuoles isolated fromBryophyllum leaf cells.Z. Pflanzenphysiol. 82:462

    Google Scholar 

  • Cheeseman, J.M., Pickard, B.G. 1977. Depolarization of cell membranes in leaves ofLycopersicon by extract contaning Ricca's factor.Can. J. Bot. 55:511

    Google Scholar 

  • Cram, W.J. 1974. Effects of Cl on HCO3 and malate fluxes and CO2 fixation in carrot and barley root cells.J. Exp. Bot. 25:253

    Google Scholar 

  • Denny, P., Weeks, D.C. 1968. Electrochemical potential gradients of ions in an aquatic angiosperm.Potamogeton schweinfurthii (Benn.).New Phytol. 67:875

    Google Scholar 

  • Dodd, W.A., Bidwell, R.G.S. 1971. The effect of pH on the products of photosynthesis in14CO2 by chloroplast preparations fromAcetabularia mediterranea.Plant Physiol. 47:779

    Google Scholar 

  • Drawert, H. 1968. Vitalfärbung und Vitalfluorochromierung pflanzlicher Zellen und Gewebe. Protoplasmatologia II/D 3. Springer-Verlag, Wien-New York

    Google Scholar 

  • Dunlop, J. 1976. The electrical potential difference across the tonoplast of root cells.J. Exp. Bot. 27:908

    Google Scholar 

  • Etherton, B. 1970. Effect of indole-3-acetic acid on membrane potentials of oat coleoptile cells.Plant Physiol. 45:527

    Google Scholar 

  • Etherton, B., Higinbotham, N. 1960. Transmembrane potential measurements of cells of higher plants as related to salt uptake. Science131:409

    PubMed  Google Scholar 

  • Ginsburg, H., Ginzburg, B.Z. 1974. Radial water and solute flows in roots ofZea mays. IV. Electric potential profiles across the root.J. Exp. Bot. 25:28

    Google Scholar 

  • Greenway, H., Winter, K., Lüttge, U. 1978. Phosphoenolpyruvate carboxylase during development of crassulacean acid metabolism and during a diurnal cycle inMesembryanthemum crystallinum.J. Exp. Botany 29:547

    Google Scholar 

  • Haschke, H.-P., Lüttge, U. 1975a. Interactions between IAA, potassium, and malate accumulation, and growth inAvena coleoptile segments.Z. Pflanzenphysiol. 76:450

    Google Scholar 

  • Haschke, H.-P., Lüttge, U. 1975b. Stoichiometric correlation of malate accumulation with auxin-dependent K+−H+ exchange and growth inAvena coleoptile segments.Plant Physiol. 56:696

    Google Scholar 

  • Haschke, H.-P., Lüttge, U. 1977. Auxin action on K+−H+-exchange and growth,14CO2-fixation and malate accumulation inAvena coleoptile segments. In: Regulation of Cell Membrane Activities in Plants. E. Marrè and O. Ciferri, editors. pp. 243–248. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Higinbotham, N., Pierce, W.S. 1976. Potassium uptake with respect to cation-anion balance in pea epicotyl segments.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. pp. 406–411. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Hohorst, H.J. 1970. L(-)-Malat, Bestimmung mit Malatdehydrogenase und NAD.In: Methoden der enzymatischen Analyse. H.U. Bergmeyer, editor. Vol. II, pp. 1544–1548. Verlag Chemie, Weinheim

    Google Scholar 

  • Jacoby, B., Laties, G.G. 1971. Bicarbonate fixation and malate synthesis in relation to salt-induced stoichiometric synthesis of organic acid.Plant Physiol. 47:525

    Google Scholar 

  • Jones, M.G.K., Novacky, A., Dropkin, V.H. 1975. Transmembrane potentials of parenchyma cells and nematode-induced transfer cells.Protoplasma 85:15

    Google Scholar 

  • Kirk, C.A. van, Raschke, K. 1978. Presence of chloride reduces malate production in epidermis during stomatal opening.Plant Physiol. 61:361

    Google Scholar 

  • Kluge, M. 1969. Zur Analyse des CO2-Austausches vonBryophyllum. I. Messung der Änderung des Mengenverhältnisses einiger Phosphorverbindungen im Blattgewebe während bestimmter Phasen der Licht-Dunkel-Periode.Planta 85:160

    Google Scholar 

  • Kluge, M. 1976. Models of CAM regulation. In: CO2-Metabolism and Plant Productivity. R.H. Burris and C.C. Black, editors. pp. 205–216. University Park Press, Baltimore-London-Tokyo

    Google Scholar 

  • Kluge, M., Heininger, B. 1973. Untersuchungen über den Efflux von Malat aus der Vakuole der assimilierenden Zellen vonBryophyllum und mögliche Einflüsse dieses Vorgangs auf den CAM.Planta 113:333

    Google Scholar 

  • Kluge, M., Osmond, C.B. 1972. Studies on phosphoenolpyruvate carboxylase and other enzymes of crassulacean acid metabolism ofBryophyllum tubiflorum andSedum praealtum.Z. Pflanzenphysiol. 66:97

    Google Scholar 

  • Lin, W., Wagner, G.J., Hind, G. 1977. The proton pump and membrane potential of intact vacuoles isolated fromTulipa petals.Plant Physiol. 59 (Suppl.) 471:85

    Google Scholar 

  • Lüttge, U., Ball, E. 1974a. Proton and malate fluxes in cells ofBryophyllum daigremontianum leaf slices in relation to potential osmotic pressure of the medium.Z. Pflanzenphysiol. 73:326

    Google Scholar 

  • Lüttge, U., Ball, E. 1974b. Mineral ion fluxes in slices of acidified and de-acidified leaves of the CAM plantBryophyllum daigremontianum.Z. Pflanzenphysiol. 73:339

    Google Scholar 

  • Lüttge, U., Ball, E. 1977. Concentration and pH dependence of malate efflux and influx in leaf slices of CAM plants.Z. Pflanzenphysiol. 83:43

    Google Scholar 

  • Lüttge, U., Ball, E., Greenway, H. 1977. Effect of water and turgor potential on malate efflux from leaf slices ofKalanchoë daigremontiana.Plant Physiol. 60:521

    Google Scholar 

  • Lüttge, U., Ball, E., Tromballa, H.-W. 1975a. Potassium independence of osmoregulated oscillations of malate2− levels in the cells of CAM-leaves.Biochem. Physiol. Pflanzen 167:267

    Google Scholar 

  • Lüttge, U., Kluge, M., Ball, E. 1975b. Effects of osmotic gradients on vacuolar malic acid storage. A basic principle in oscillatory behavior of crassulacean acid metabolism.Plant Physiol. 56:613

    Google Scholar 

  • Lüttge, U., Zirke, G. 1974. Attempts to measure plasmalemma and tonoplast electropotentials in small cells of the mossMnium using centrifugation techniques.J. Membrane Biol. 18:305

    Google Scholar 

  • MacRobbie, E.A.C. 1970. The active transport of ions in plant cells.Q. Rev. Biophys. 3:251

    PubMed  Google Scholar 

  • Marrè, E. 1977. Effects of fusicoccin and hormones on plant cell membrane activities: Observations and hypothesis.In: Regulation of Cell Membrane Activities in Plants. E. Marrè and O. Ciferri, editors. pp. 185–202. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Matile, Ph. 1978. Biochemistry and function of vacuoles.Annu. Rev. Plant Physiol. 29:193

    Google Scholar 

  • Mertz, S.M., Higinbotham, N. 1976. Transmembrane electropotential in barley roots as related to cell type, cell location, and cutting and ageing effects.Plant Physiol. 57:123

    Google Scholar 

  • Novacky, A., Fischer, E., Ullrich-Eberius, C.I., Lüttge, U., Ullrich, W.R. 1978a. Membrane potential changes during transport of glycine as a neutral amino acid and nitrate inLemna gibba G 1.FEBS-Lett. 88:264

    Google Scholar 

  • Novacky, A., Ullrich-Eberius, C.I., Lüttge, U. 1978b. Membrane potential changes during transport of hexoses inLemna gibba G 1.Planta 138:263

    Google Scholar 

  • Osmond, C.B. 1976. Ion absorption and carbon metabolism in cells of higher plants.In: Transport in Plants II, Part A Cells. Encyclopedia of Plant Physiology New Series. U. Lüttge and M.G. Pitmann, editors. pp. 347–372. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Pallaghy, C.K., Lüttge, U. 1970. Light-induced H+-ion fluxes and bioelectric phenomena in mesophyll cells ofAtriplex spongiosa.Z. Pflanzenphysiol. 62:417

    Google Scholar 

  • Pitman, M.G., Mertz, S.M., Graves, J.S., Pierce, W.S., Higinbotham, N. 1970. Electrical potential differences in cells of barley roots and their relation to ion uptake.Plant Physiol. 47:76

    Google Scholar 

  • Raschke, K., Schnabl, H. 1978. Availability of chloride affects the balance between potassium chloride and potassium malate in guard cells ofVicia faba L.Plant Physiol. 62:84

    Google Scholar 

  • Sambeek, J.W. van, Pickard, B.G. 1976a. Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. I. Variation potentials and putative action potentials in intact plants.Can. J. Bot. 54:2642

    Google Scholar 

  • Sambeek, J.W. van, Pickard, B.G. 1976b. Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. III. Measurements of CO2 and H2O flux.Can. J. Bot. 54:2662

    Google Scholar 

  • Sambeek, J.W. van, Pickard, B.G., Ulbright, C.E. 1976. Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. II. Mediation of the variation potential by Ricca's factor.Can. J. Bot. 54:2651

    Google Scholar 

  • Schaefer, N. 1978. Aspects of ion transport regulation in roots. Ph.D. Thesis, University of Sydney

  • Schnabl, H., Ziegler, H. 1977. The mechanisms of stomatal movement inAllium cepa L.Planta 136:37

    Google Scholar 

  • Slayman, C.L., Gradmann, D. 1975. Electrogenic proton transport in the plasma membrane ofNeurospora.Biophysical J. 15:968

    Google Scholar 

  • Slayman, C.L., Slayman, C.W. 1968. Net uptake of potassium inNeurospora. Exchange for sodium and hydrogen ions.J. Gen. Physiol. 52:424

    PubMed  Google Scholar 

  • Smith, F.A., Raven, J.A. 1976. H+ transport and regulation of cell pH.In: Transport in Plants II, Part A Cells. Encyclopedia of Plant Physiology New Series. U. Lüttge and M.G. Pitman, editors. pp. 317–346. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Tanner, W., Komor, E., Fenzl, F., Decker, M. 1977. Sugar-proton cotransport systems.In: Regulation of Cell Membrane Activities in Plants. E. Marrè and O. Ciferri, editors. pp. 79–90. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Torii, K., Laties, G.G. 1966. Organic acid synthesis in response to excess cation absorption in vacuolate and nonvacuolate sections of corn and barley roots.Plant Cell Physiol. 7:395

    Google Scholar 

  • Walker, N.A., Smith, F.A. 1975. Intracellular pH inChara corallina measured by DMO distribution.Plant Sci. Lett. 4:125

    Article  Google Scholar 

  • Winter, K. 1974. Einfluß von Wasserstress auf die Aktivität der Phosphoenolpyruvat Carb-oxylase beiMessembryanthemum crystallinum (L.).Planta 121:147

    Google Scholar 

  • Wyn Jones, R.G., Brady, C.J., Speirs, J. 1979. Ionic and osmotic relations in plant cells.In: Recent Advances in the Biochemistry of Cereals. D.L. Laidman and R.G. Wyn Jones, editors. (in press) Academic Press, London-New York

    Google Scholar 

  • Zurzycki, J. 1968. Changes of the trans-membrane potential of the leaf cell ofFunaria hygrometrica under influence of light.Acta Soc. Bot. Pol. 37:519

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüttge, U., Ball, E. Electrochemical investigation of active malic acid transport at the tonoplast into the vacuoles of the CAM plantKalanchoë daigremontiana . J. Membrain Biol. 47, 401–422 (1979). https://doi.org/10.1007/BF01869746

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869746

Keywords

Navigation