Skip to main content
Log in

On the redox reactions and accessibility of amphiphilic flavins in artificial membrane vesicles

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

(Photo-)redox reactions of different amphiphilic flavins bound to artificial membrane vesicles made from three different, saturated phospholipids have been investigated and compared with those of isotropically dissolved flavin. By means of C18-hydrocarbon chains, substituted at different positions, the flavin nucleus can be specifically oriented within the membrane, thereby imposing sterically anisotropic environments, which are liable to control flavin (photo-) chemistry. A spectrophotometric setup was designed, permitting photoreduction of flavin and its simultaneous control by fluorescence. The characteristic temperature dependency of the (vesicle-bound) flavin photoreduction by external and internal photosubstrates, as studied for the different lipid/flavin systems, is explained by the displacement of the flavin nucleus from the area of the polar head groups of the lipid into the more hydrophobic parts of the membrane upon phase transition (gel→liquid crystalline). Evidence is presented that this flavin displacement is correlated with the pre-phase transition rather than with the main phase transition, supporting a former hypothesis of the structural nature of the pre-phase transitions. The transport of redox equivalents across flavin-charged membranes is discussed. The accessibility of vesicle-bound flavins by a variety of exogeneous ions (H+, Cs+, EDTA, NTA, BH3CN, I, N 3 ) is explored as a function of temperature, i.e., membrane phase which, in turn, appears to control the permeability of the lipid/water interface. Therefore, it appears indispensable to include the interface as a separate structural entity into any theory on membrane transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blumenthal, R., Changeux, J.-P., Lefever, R. 1970. Membrane excitability and dissipative instabilities.J. Membrane Biol. 2:351

    Google Scholar 

  2. Bruice, R.C. 1976. Models and flavin catalysis.In: Progress in Bioanorganic Chemistry. E.T. Kaiser and F.J. Kezdy, editors. Vol. 4, p. 1. John Wiley & Sons, New York-London-Sidney-Toronto

    Google Scholar 

  3. Butler, W.L. 1972. Spectroscopy of biological materials.In: Methods in Enzymology. Vol. XXIV, Part B, pp. 3–25. A. San Pietro, editor. Academic Press, New York

    Google Scholar 

  4. Butler, W.L., Hopkins, D.W. 1970. Higher derivative analysis of complex absorption spectra.Photochem. Photobiol. 12:439

    Google Scholar 

  5. Ghisla, S., Hartmann, W., Hemmerich, P., Müller, R. 1973. Die reduktive Alkylierung des Flavinkerns; Struktur und Reaktivität von Dihydroflavinen.Liebigs Ann. Chem. 1973:1388

    Google Scholar 

  6. Gibson, Q.H., Hastings, J.W. 1961. The oxidation of reduced flavin mononucleotide by molecular oxygen.Biochem. J. 83:368

    Google Scholar 

  7. Haas, W., Hemmerich, P. 1979. Flavin-dependent substrate photo-oxidation as a chemical model of dehydrogenase action.Biochem. J. 181:95

    PubMed  Google Scholar 

  8. Heelis, P.F., Parsons, B.J., Phillips, G.O., Barghigiani, C., Colembetti, G., Lenci, F., McKellar, J.F. 1979. Flavin pigments embedded in lipid matrices: A spectroscopic and photochemical investigation.Photochem. Photobiol. 30:507

    Google Scholar 

  9. Hemmerich, P. 1976. The present status of flavin and flavoenzyme chemistry.Prog. Chem. Org. Natural Prod. 33:451

    Google Scholar 

  10. Hemmerich, P. 1977. Bio(in)organic views on flavin-dependent one-electron transfer.In: Bioorganic Chemistry II. pp. 321–329, Advances in Chemistrys, Series No. 162. K.N. Raymond, editor. Academic Press, New York

    Google Scholar 

  11. Hemmerich, P., Ehrenberg, A., Walker, W.H., Erikson, L.E.G., Salach, J., Bader, P., Singer T.P. 1969. On the structure of succinate dehydrogenase flavocoenzyme.FEBS Lett. 3:37

    PubMed  Google Scholar 

  12. Hemmerich, P., Knappe, W.-R., Kramer, H.E.A., Traber, R. 1980. Distinction of 2e and 1e reduction modes of the flavin chromophore as studied by flash photolysis.Eur. J. Biochem. 104:511

    PubMed  Google Scholar 

  13. Hemmerich, P., Massey, V. 1980. The role of the apoprotein in directing pathways of flavin catalysis.In: Oxidases and Related Redox Systems. T.E. King, H.S. Mason, M. Morrision, editors, Pergamon Press, Oxford (in press)

    Google Scholar 

  14. Hemmerich, P., Wessiak, A. 1979. On the chemistry of flavin-dependent oxygen activation.In: Oxygen: Biochemical and Clinical Aspects. W.S. Caughey, editor. pp. 491–511. Academic Press, New York

    Google Scholar 

  15. Hinz, H.J., Sturtevant, J.M. 1972. Calorimetric studies of dilute aqueous suspensions of bilayers from syntheticl-α-Lecithin.J. Biol. Chem. 247(19):6071

    Google Scholar 

  16. Kavanagh, R., Goodwin, R.H. 1949. The relationship between pH and fluorescence of several organic compounds.Arch. Biochem. 20:315

    Google Scholar 

  17. Klibanov, A.M., Kaplan, N.O., Kamen, M.D. 1978. A rationale for stabilizing of oxygen-labile enzymes: Application to a clostridial hydrogenase.Proc. Natl. Acad. Sci. USA 75:3640

    PubMed  Google Scholar 

  18. Ladbrooke, B.D., Chapman, D. 1969. Thermal analysis of lipids, proteins and biological membranes; A review and summary of recent studies.Chem. Phys. Lipids 3:304

    PubMed  Google Scholar 

  19. Lee, A.G. 1975. Functional properties of biological membranes: A physical chemical approach.Prog. Biophys. Mol. Biol. 29:5

    Google Scholar 

  20. Lipson, E.D., Presti, D. 1977. Light-induced absorbance changes inPhysomyces photomutants.Photochem. Photobiol. 25:203

    Google Scholar 

  21. Michel, H., Hemmerich, P. 1980. Substitution of the flavin chromophore with lipophilic sidechains: A novel membrane redox label.J. Membrane Biol. 60:143

    Google Scholar 

  22. Radda, G.K., Calvin, M. 1964. Chemical and photochemical reductions of flavin nucleotides and analogs.Biochemistry 3:384

    Google Scholar 

  23. Schmidt, W. 1979. On the environment and the rotational motion of amphiphilic flavins in artificial membrane vesicles as studied by fluorescence.J. Membrane Biol. 47:1

    Google Scholar 

  24. Schmidt, W. 1980. Physiological bluelight reception.In: Structure and Bonding. P. Hemmerich, editor. Vol. 41, pp. 1–41. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  25. Schmidt, W. 1980. A high-performance dual wavelength spectrophotometer and fluorometer.J. Biochem. Biophys. Methods 2:171

    PubMed  Google Scholar 

  26. Schmidt, W., Butler, W.L. 1976. Flavin-mediated photoreactions in artificial systems: A possible model for the bluelight photoreceptor pigment in living systems.Photochem. Photobiol. 24:71

    PubMed  Google Scholar 

  27. Träuble, H. 1971. Phasenumwandlungen in Lipiden, Mögliche Schaltprozesse in biologischen Membranen. Naturwissenschaften58:277

    PubMed  Google Scholar 

  28. Trissl, H.W. 1974. Studies on the incorporation of fluorescent pigments into bilayer membranes.Biochim. Biophys. Acta 367:326

    PubMed  Google Scholar 

  29. Walker, W.H., Hemmerich, P., Massey, V. 1970. Light-induced alkylation and dealkylation of the flavin nucleus. Stable dihydroflavins. Spectral course and mechanism of formation.Eur. J. Biochem. 13:258

    PubMed  Google Scholar 

  30. Weber, G. 1954. Dependence of the polarization of the fluorescence on the concentration.Trans. Faraday Soc. 50:552

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, W., Hemmerich, P. On the redox reactions and accessibility of amphiphilic flavins in artificial membrane vesicles. J. Membrain Biol. 60, 129–141 (1981). https://doi.org/10.1007/BF01870415

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870415

Keywords

Navigation