Skip to main content
Log in

Na+−K+ pump activity and the glucose-stimulated Ca2+-sensitive K+ permeability in the pancreatic B-cell

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A rise in the extracellular concentration of glucose from an intermediate to a high value changes the burst pattern of electrical activity of the pancreatic B-cell into a continuous firing, and yet activates the B-cell Ca2+-sensitive K+ permeability. The hypothesis that glucose exerts such effects by inhibiting the Na+, K+-ATPase was investigated. Ouabain (1 mM) mimicked the effect of 16.7mm glucose in stimulating86Rb,45Ca outflow and insulin release from perifused rat pancreatic islets first exposed to 8.3mm glucose. The stimulation by ouabain of86Rb outflow was reduced in the absence of extracellular Ca2+ and almost completely abolished in the presence of quinine, and inhibitor of the Ca2+-sensitive K+ permeability. In the presence of ouabain, a rise in the glucose concentration from 8.3 to 16.7mm failed to stimulate86Rb outflow. However, the rise in the glucose concentration failed to inhibit86Rb influx in islet cells, while ouabain dramatically reduced86Rb influx whether in the presence of 8.3 or 16.7mm glucose. These findings do not suggest that inhibition of the B-cell Na+, K+-ATPase represents the mechanism by which glucose in high concentration stimulates86Rb outflow and induces continous electrical activity in the B-cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armando-Hardy, M., Ellory, J.C., Ferreira, H.G., Fleminger, S., Lew, V.L. 1975. Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine.J. Physiol. (London) 250:32P-33P

    Google Scholar 

  2. Atwater, I. 1980. Control mechanisms for glucose-induced changes in the membrane potential of mouse pancreatic B-cell.Cien. Biol. 5:299–314

    Google Scholar 

  3. Atwater, I., Beigelman, P.M. 1976. Dynamic characteristics of electrical activity in pancreatic B-cells. I. Effects of calcium and magnesium removal.J. Physiol. (Paris) 72:769–786

    Google Scholar 

  4. Atwater, I., Dawson, C.M., Ribalet, B., Rojas, E. 1979. Potassium permeability activated by extracellular calcium ion concentration in the pancreatic B-cell.J. Physiol. (London) 288:575–588

    Google Scholar 

  5. Atwater, I., Meissner, H.P. 1975. Electrogenic sodium pump in B-cells of islets of langerhans.J. Physiol. (London) 247:56P-58P

    Google Scholar 

  6. Atwater, I., Ribalet, B., Rojas, E. 1978. Cyclic changes in potential and resistance of the B-cell membrane induced by glucose in islet of Langerhans from mouse.J. Physiol. (London) 278:117–139

    Google Scholar 

  7. Atwater, I., Ribalet, B., Rojas, E. 1979. Mouse pancreatic B-cells: Tetraethylammonium blockade of the potassium permeability increase induced by depolarization.J. Physiol. (London) 288:561–574

    Google Scholar 

  8. Boschero, A.C., Kawazu, S., Duncan, G., Malaisse, W.J. 1977. Effect of glucose on K+ handling by pancreatic islets.FEBS Lett. 83:151–154

    PubMed  Google Scholar 

  9. Carpinelli, A.R., Malaisse, W.J. 1981. Regulation of86Rb outflow from pancreatic islets: The dual effect of nutrient secretagogues.J. Physiol. (London) 315:143–156

    Google Scholar 

  10. Dean, P.M., Matthews, E.K. 1970. Glucose-induced electrical activity in pancreatic islet cells.J. Physiol. (London) 210:255–264

    Google Scholar 

  11. Donatsch, P., Lowe, D.A., Richardson, B.P., Taylor, P. 1977. The functional significance of sodium channels in pancreatic beta-cell membranes.J. Physiol. (London) 267:357–376

    Google Scholar 

  12. Henquin, J.C. 1978.d-glucose inhibits potassium efflux from pancreatic islet cells.Nature (London) 271:271–273

    Google Scholar 

  13. Henquin, J.C. 1979. Opposite effects of intracellular Ca2+ and glucose on K+ permeability of pancreatic islet cells.Nature (London) 280:66–68

    Google Scholar 

  14. Henquin, J.C., Meissner, H.P. 1982. The electrogenic sodium-potassium pump of mouse pancreatic B-cell.J. Physiol. (London) 332:529–552

    Google Scholar 

  15. Henquin, J.C., Meissner, H.P., Preissler, M. 1979. 9-aminoacridine and tetraethylammonium-induced reduction of the potassium permeability in pancreatic B-cells. Effect on insulin release and electrical properties.Biochim. Biophys. Acta 587:579–592

    PubMed  Google Scholar 

  16. Herchuelz, A., Malaisse, W.J. 1979. Regulation of calcium fluxes in pancreatic islets: Dissimilar effects of glucose and of sodium ion accumulation.J. Physiol. (London) 302:263–280

    Google Scholar 

  17. Herchuelz, A., Malaisse, W.J. 1982. Calcium and insulin release.In: The Role of Calcium in Biological Systems. L.J. Angileri, editor. Vol. III, part II, p. CRC Press, Boca Raton, Florida(in press)

    Google Scholar 

  18. Herchuelz, A., Sener, A., Malaisse, W.J. 1980. Regulation of calcium fluxes in rat pancreatic islets: Calcium extrusion by sodium-calcium countertransport.J. Membrane Biol. 57:1–12

    Google Scholar 

  19. Herchuelz, A., Thonnart, N., Carpinelli, A.R., Sener, A., Malaisse, W.J. 1980. Regulation of calcium fluxes in rat pancreatic islets. The role of K+ conductance.J. Pharmacol. Exp. Ther. 215:213–220

    PubMed  Google Scholar 

  20. Kemmler, W., Löffler, G. 1977. NaK-ATPase in rat pancreatic islets.Diabetologia 13:235–238

    PubMed  Google Scholar 

  21. Lacy, P.E., Kostianovsky, M. 1967. Method for the isolation of intact islets of Langerhans from the rat pancreas.Diabetes 16:35–39

    PubMed  Google Scholar 

  22. Lebrun, P., Malaisse, W.J., Herchuelz, A. 1981. Effect of calcium antagonists on potassium conductance in islet cells.Biochem. Pharmacol. 30:3291–3294

    PubMed  Google Scholar 

  23. Lebrun, P., Malaisse, W.J., Herchuelz, A. 1982. Paradoxical activation by glucose of quinine-sensitive potassium channels in the pancreatic B-cell.Biochem. Biophys. Res. Commun. 107:350–356

    PubMed  Google Scholar 

  24. Lebrun, P., Malaisse, W.J., Herchuelz, A. 1982. Activation but not inhibition by glucose of Ca2+-dependent K+ permeability in the rat panreatic B-cell. (Submitted to Biochem. Biophys. Acta)

  25. Levin, S.R., Kasson, B.G., Driessen, J.F. 1978. Adenosine triphosphatase of rat pancreatic islets. Comparison with those of rat kidney.J. Clin. Invest. 62:692–701

    PubMed  Google Scholar 

  26. Malaisse, W.J., Boschero, A.C., Kawazu, S., Hutton, J.C. 1978. The stimulus-secretion coupling of glucose-induced insulin release. XXVII. Effect of glucose on K+ fluxes in isolated islets.Pfluegers Arch. 373:237–242

    Google Scholar 

  27. Malaisse, W.J., Herchuelz, A. 1982. Nutritional regulation of K+ conductance: An unsettled aspect of pancreatic B-cell physiology.In: Biochemical actions of Hormones. IX. G. Litwack, editor. pp. 69–92. Academic Press, New York

    Google Scholar 

  28. Malaisse, W.J., Lebrun, P., Herchuelz, A. 1982. Iomic determinants of bioelectrical spiking activity in the pancreatic B-cell.Pfluegers Arch. 395:201–203

    Google Scholar 

  29. Matthews, E.K., O'Connor, M.D.L. 1979. Dynamic oscillations in the membrane potential of pancreatic islet cells.J. Exp. Biol. 81:75–91

    PubMed  Google Scholar 

  30. Meissner, H.P. 1976. Electrical characteristics of the beta-cells in pancreatic islets.J. Physiol. (Paris) 72:757–767

    Google Scholar 

  31. Meissner, H.P., Preissler, M., Henquin, J.C. 1979. Possible ionic mechanisms of the electrical activity induced by glucose and tolbutamide in pancreatic B cells.In: Diabetes. W.K. Waldhäusl, editor. No. 500. Elsevier-North Holland Inernational Congress Series, Amsterdam

  32. Ravazzola, M., Malaisse-Lagae, F., Amherdt, M., Perrelet, A., Malaisse, W.J., Orci, L. 1976. Patterns of calcium localization in pancreatic endocrine cells.J. Cell Sci. 27:107–117

    Google Scholar 

  33. Ribalet, B., Beigelman, P.M., 1979. Cyclic variation of K+ conductance in pancreatic B-cells: Ca2+ and voltage dependance.Am. J. Physiol. 237:C137-C146

    PubMed  Google Scholar 

  34. Ribalet, B., Beigelman, P.M. 1982. Effect of sodium on β-cell electrical activity.Am. J. Physiol. 242:C296-C303

    PubMed  Google Scholar 

  35. Sehlin, J., Täljedal, I.-B. 1974. Transport of rubidium and sodium in pancreatic islets.J. Physiol. (London) 242:P505-P515

    Google Scholar 

  36. Sehlin, J., Täljedal, I.-B. 1975. Glucose-induced decrease in Rb+ permeability in pancreatic B-cells.Nature (London) 253:635–636

    Google Scholar 

  37. Sener, A., Kawazu, S., Malaisse, W.J. 1980. The stimulussecretion coupling of glucose-induced insulin release. Metabolism of glucose in K+ deprived islets.Biochem. J. 186:183–190

    PubMed  Google Scholar 

  38. Tarvin, J.T., Pace, C.S. 1981. Glucose induced electrical activity in the pancreatic β-cell: Effect of veratridine.Am. J. Physiol. 240:C127-C134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebrun, P., Malaisse, W.J. & Herchuelz, A. Na+−K+ pump activity and the glucose-stimulated Ca2+-sensitive K+ permeability in the pancreatic B-cell. J. Membrain Biol. 74, 67–73 (1983). https://doi.org/10.1007/BF01870596

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870596

Key words

Navigation