Skip to main content
Log in

The effects of a cyclic polyether on the electrical properties of phospholipid bilayer membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The cyclic polyether XXXII, a neutral, lipid soluble molecule, produces large increases in the conductance of bilayer membranes formed from a variety of lipids. The conductance increases linearly with the concentration of alkali metal cation but with the square, and at higher concentrations the cube, of the polyether concentration. This implies that two or three polyether molecules combine with a single cation to carry it across the membrane. In the presence of XXXII the bilayer is permeable solely to cations and the membrane potential is described by an equation of the Goldman-Hodgkin-Katz type. The permeability ratios determined from potential measurements are independent of salt concentration, decrease in the sequence Cs>Rb>K>NH4>Na>Li(1.0,0.25, 0.15, 0.075, 0.007, 0.0013) and are equal to the conductance ratios at low (e.g. 10−3 m) salt concentration. At higher salt concentrations, the permeability and conductance ratios are not equal and maxima in the conductancevs. salt concentration curves are observed. Both these phenomena are postulated to be caused by the formation of relatively impermeant 1ν1 polyether cation complexes in the aqueous phase. The 1ν1 aqueous association constants deduced from bilayer measurements decrease in the sequence K>Rb>Na>NH4>Cs>Li (120, 34, 26, 19, 12, 4 liters per mole) and agree quantitatively with the literature values for the more water soluble polyether XXXI, which lacks only thet-butyl groups of XXXII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bright, D., Truter, M. R. 1970a. Crystal structures of complexes between alkali metal salts and cyclic polyethers.J. Chem. Soc., (B). 1970: 1544.

    Google Scholar 

  • Bright, D., Truter, M. R. 1970b. Crystal structure of a cyclic polyether complex of alkali metal thiocyanate.Nature 225:176.

    Google Scholar 

  • Cass, A., Finkelstein, A., Krespi, V. 1970. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.J. Gen. Physiol. 56: 100.

    PubMed  Google Scholar 

  • Chandler, W. K., Meves, H. 1965. Voltage-clamp experiments on internally perfused giant axons.J. Physiol. 180:788.

    PubMed  Google Scholar 

  • Christensen, J. J., Hill, J. O., Izatt, R. M. 1971. Ion binding by synthetic macrocyclic compounds.Science 174:459.

    Google Scholar 

  • Ciani, S., Eisenman, G., Szabo, G. 1969. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electrical properties of bilayer membranes.J. Membrane Biol. 1:1.

    Google Scholar 

  • Eisenman, G., Ciani, S. M., Szabo, G. 1968. Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions.Fed. Proc. 27:1289.

    PubMed  Google Scholar 

  • Eisenman, G., Ciani, S. M., Szabo, G. 1969. The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents.J. Membrane Biol. 1:294.

    Google Scholar 

  • Eisenman, G., Szabo, G., McLaughlin, S., Ciani, S. 1972. Molecular basis for the action of macrocyclic carriers on passive ion translocation across lipid bilayer membranes.J. Bioenergetics. (In Press.)

  • Frensdorff, H. K. 1971a. The stability constants of cyclic polyether complexes with univalent cations.J. Amer. Chem. Soc. 93:600.

    Google Scholar 

  • Frensdorff, H. K. 1971b. Salt complexes of cyclic polyethers. Distribution equilibria.J. Amer. Chem. Soc. 93:4684.

    Google Scholar 

  • Goldman, D. E. 1943. Potential, impedance, and rectification in membranes.J. Gen. Physiol. 27:37.

    Google Scholar 

  • Hodgkin, A. L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. 116:473.

    Google Scholar 

  • Hopfer, U., Lehninger, A. L., Lennarz, W. J. 1970. The effect of the polar moiety of lipids on the ion permeability of bilayer membranes.J. Membrane Biol. 2:41.

    Google Scholar 

  • Izatt, R. M., Nelson, D. P., Rytting, J. H. Haymore, B. L., Christensen, J. J. 1971. A calorimetric study of the interaction in aqueous solution of several uni-and bivalent metal ions with the cyclic polyether dicyclohexyl-18-crown-6 at 10, 25 and 40°.J. Amer. Chem. Soc. 93:1619.

    Google Scholar 

  • Kilbourn, B. T., Dunitz, J. D., Pioda, L. A. R., Simon, W. 1967. Structure of the K+ complex with nonactin, a macrotetralide possessing highly specific K+ transport properties.J. Mol. Biol. 30:559.

    PubMed  Google Scholar 

  • Krasne, S., Eisenman, G., Szabo, G. 1971. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin.Science 174:412.

    PubMed  Google Scholar 

  • Läuger, P., Stark, G. 1970. Kinetics of carrier-mediated ion transport across lipid bilayer membranes.Biochim. Biophys. Acta 211:458.

    PubMed  Google Scholar 

  • Markin, V. S., Krishtalik, L. I., Liberman, E. A., Topaly, V. P. 1969. Mechanism of conductivity of artificial phospholipid membranes in the presence of ion carriers.Biofizika 14:256.

    PubMed  Google Scholar 

  • McLaughlin, S. G. A. 1972. Local anaesthetics, salicylate and the surface potential of bilayer membranes.Biophys. Soc. Abstr. 12:181a.

    Google Scholar 

  • McLaughlin, S. G. A., Eisenman, G., Szabo, G. 1972. The rate limiting step for the permeation of a cyclic polyether through bilayer membranes. (In Preparation.)

  • McLaughlin, S. G. A., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667.

    PubMed  Google Scholar 

  • McLaughlin, S. G. A., Szabo, G., Eisenman, G., Ciani, S. M. 1970. Surface charge and the conductance of phospholipid membranes.Proc. Nat. Acad. Sci. 67:1268.

    PubMed  Google Scholar 

  • Neumcke, B., Läuger, P. 1970. Space charge-limited conductance in lipid bilayer membranes.J. Membrane Biol. 3:54.

    Google Scholar 

  • Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems.Nature 221:844.

    PubMed  Google Scholar 

  • Pedersen, C. J. 1967. Cyclic polyethers and their complexes with metal salts.J. Amer. Chem. Soc. 89:7017.

    Google Scholar 

  • Pedersen, C. J. 1970. Crystalline salt complexes of macrocyclic polyethersJ. Amer. Chem. Soc. 92:386.

    Google Scholar 

  • Shemyakin, M. M., Ovchinnikov, Yu. A., Ivanov, V. T., Antonov, V. K., Vinogradova, E. I., Shkrob, A. M., Malenkov, G. G., Evstratov, A. V., Laine, I. A., Melnik, E. I., Ryabova, I. D. 1969. Cyclodepsipeptides as chemical tools for studying ionic transport through membranes.J. Membrane Biol. 1:402.

    Google Scholar 

  • Stark, G., Benz, R., 1971. The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin.J. Membrane Biol. 5:133.

    Google Scholar 

  • Stillman, I., Gilbert, D., Robbins, M. 1969. Effect of monactin on potassium currents of squid giant axons.Biophys. Soc. Abstr. 9:A-250.

    Google Scholar 

  • Szabo, G. 1969. The effect of neutral molecular complexes of cations on the electrical properties of lipid bilayer membranes. Ph. D. Thesis. University of Chicago, Chicago, Ill.

    Google Scholar 

  • Szabo, G., Eisenman G., Ciani, S. M. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 1:346.

    Google Scholar 

  • Szabo, G., Eisenman, G., McLaughlin, S. G. A., Krasne, S. 1972. Ionic probes of membranes structures.Proc. N. Y. Acad. Sci. (In Press.)

  • Tosteson, D. C. 1968. Effect of macrocyclic compounds on the ionic permeability of natural and artificial membranes.Proc. Fed. Amer. Soc. Exp. Biol. 27:1269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLaughlin, S.G.A., Szabo, G., Ciani, S. et al. The effects of a cyclic polyether on the electrical properties of phospholipid bilayer membranes. J. Membrain Biol. 9, 3–36 (1972). https://doi.org/10.1007/BF01868041

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868041

Keywords

Navigation