Skip to main content
Log in

Cell membrane and transepithelial voltages and resistances in isolated rat hepatocyte couplets

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The basic electrical properties of an isolated rat hepatocyte couplet (IRHC) system have been analyzed using classical techniques of epithelial electrophysiology, including measurement of electric potentials, resistances and intracellular ion activities. Applications of these techniques are discussed with respect to their limitations in small isolated cells. Mean intracellular and intracanalicular membrane potentials ranged from −23.7 to −46.7 and −4.3 to −5.9 mV, respectively. Membrane resistances were determined using an equivalent circuit analysis modified according to the geometry of the IRHC system. Resistances of the sinusoidal (basolateral) and canalicular (luminal) cell membranes and tight junctions averaged 0.15 and 0.78 GΩ and 25mΩ, respectively. The cells are electrically coupled via low resistance intercellular communications (∼58 MΩ). Intracellular ion activities for Na+, K+ and Cl averaged 12.2, 88.1 and 17.7 mmol/liter, respectively. The basolateral membrane potential reveals a permeability sequence ofP K>P Cl>P Na. The luminal potential showed minimal dependence on changes in transjunctional ion gradients, indicating a poor ion selectivity of the paracellular pathway. The electrogenic (Na+−K)-ATPase contributes little to the luminal and cellular negative electric potential. Therefore, the luminal potential probably results from the secretion of impermeant ions and a Donnan distribution of permeant ions, a mechanism which provides the osmotic driving force for bile formation. By providing the unique opportunity to measure luminal potentials, this isolated hepatocyte system permits study of secretory mechanisms for the first time in a mammalian gland using electrophysiologic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anwer, M.S., Hegner, D. 1983. Role of inorganic electrolytes in bile acid-independent canalicular bile formation.Am. J. Physiol. 244:116–124

    Google Scholar 

  • Beck, F., Dörge, A., Mason, J., Rick, R., Thurau, K. 1982. Element concentrations of renal and hepatic cells under potassium depletion.Kidney Int. 22:250–256

    PubMed  Google Scholar 

  • Blant, M.R., Slayman, C.L. 1983. KCl leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell.J. Membrane Biol. 72:223–234

    Google Scholar 

  • Blitzer, B.L., Boyer, J.L. 1978. Cytochemical localization of Na+, K+-ATPase in the rat hepatocyte.J. Clin. Invest. 62:1104–1108

    PubMed  Google Scholar 

  • Blitzer, B.L., Ratoosh, S.L., Donovan, C.B., Boyer, J.L. 1982. Effects of inhibitors of Na+-coupled ion transport on bile acid uptake by isolated rat hepatocytes.Am. J. Physiol. 243:G48-G53

    PubMed  Google Scholar 

  • Boulpaep, E.L., Sackin, H. 1979. Equivalent electrical circuit analysis and rheogenic pumps in epithelia.Fed. Proc. 38:2030–2036

    PubMed  Google Scholar 

  • Boyer, J.L., Ng, O.-C., Gautam, A. 1985. Formation of canalicular spaces in isolated rat hepatocyte couplets.Trans. Assoc. Am. Phys. 98:21–29

    PubMed  Google Scholar 

  • Capiod, T., Ogden, D. 1985. Noise analysis of α-adrenergic activated K-conductance in isolated guinea pig hepatocytes.J. Physiol. (London) 369:107P

    Google Scholar 

  • Claret, M. 1979. Transport of ions in liver cells.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. Vol. 4, pp. 899–920. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Claret, M., Coraboeuf, E., Favier, M.P. 1970. Effect of ion concentration changes on membrane potential of perfused rat liver.Arch. Int. Physiol. Biochim. 78:531–545

    PubMed  Google Scholar 

  • Claret, M., Mazet, J.L. 1972. Ionic fluxes and permeabilities of cell membranes in rat liver.J. Physiol. (London) 223:279–295

    Google Scholar 

  • Claude, P. 1978. Morphological factors influencing transepithelial permeability: A model for the resistance of the zonula occludens.J. Membrane Biol. 39:219–232

    Google Scholar 

  • Cohen, R.D., Henderson, R.M., Iles, R.A., Smith, J.A. 1982. Metabolic inter-relationships of intracellular pH measured by double-barrelled micro-electrodes in perfused rat liver.J. Physiol. (London) 330:69–80

    Google Scholar 

  • Douglas, W.W., Taraskevich, P.S. 1985. The electrophysiology of the adenohypophyseal cells.In: Electrophysiology of the Secretory Cell. A.M. Poisner and J.M. Trifaro, editors. pp. 63–92. Elsevier, Amsterdam

    Google Scholar 

  • Fitz, J.G., Scharschmidt, B.F. 1985. Regulation of transmembrane electrical potential (E m ) of rat hepatocytesin situ. (Abstr.) Hepatology 5:1011

    Google Scholar 

  • Gautam, A., Scaramuzza, D., Boyer, J.L. 1986. Quantitative assessment of primary canalicular secretion in isolated rat hepatocyte couplets (IRHC) by optical planimetry. (Abstr.)Gastroenterology 90:1727

    Google Scholar 

  • Graf, J. 1976. Sodium pumping and bile secretion.In: The Liver: Quantitative Agents of Structure and Function. R. Presig, J. Bircher and G. Paumgartner, editors. pp. 370–385. Edito Cantor, Aulendorf, W. Germany

    Google Scholar 

  • Graf, J. 1983. Canalicular bile salt independent bile formation: Concepts and clues for electrolyte transport in rat liver.Am. J. Physiol. 244:G233-G246

    PubMed  Google Scholar 

  • Graf, J., Gautam, A., Boyer, J.L. 1984. Isolated rat hepatocyte couplets: A primary secretory unit for electrophysiologic studies of bile secretory function.Proc. Natl. Acad. Sci. USA 81:6516–6520

    PubMed  Google Scholar 

  • Graf, J., Giebisch, G. 1979. Intracellular sodium activity and sodium transport inNecturus gallbladder epithelium.J. Membrane Biol. 47:327–355

    Google Scholar 

  • Graf, J., Peterlik, M. 1975. Mechanisms of transport of inorganic ions into bile.In: The Hepatobiliary System-Fundamental and Pathological Mechanisms. W. Taylor, editor. pp. 43–58. Plenum, New York

    Google Scholar 

  • Graf, J., Petersen, O.H. 1974. Electrogenic sodium pump in mouse liver parenchymal cells.Proc. R. Soc. London B 187:363–367

    Google Scholar 

  • Graf, J., Petersen, O.H. 1978. Cell membrane potential and resistance in liver.J. Physiol. (London) 284:105–126

    Google Scholar 

  • Henderson, R.M., Graf, J., Boyer, J.L. 1987. Na−H exchange regulates intracellular pH in isolated rat hepatocyte couplets.Am. J. Physiol. 252:G109-G113

    PubMed  Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  • Hosoi, S., Slayman, C.L. 1985. Membrane voltage, resistance, and channel switching in isolated mouse fibroblasts (L cells): A patch electrode analysis.J. Physiol. (London) 367:267–290

    Google Scholar 

  • Kernan, R.P., MacDermott, M. 1980. Measurement of potassium and chloride activities in liver cells and in extensor digitorum longus muscle fibres of anaesthetised rats in situ.(abstr.) Proc. Int. Union. Physiol. Sci. 14:510

    Google Scholar 

  • Klos, C., Paumgartner, G., Reichen, J. 1979. Cation anion gap and choleretic properties of rat bile.Am. J. Physiol. 236:E434-E441

    PubMed  Google Scholar 

  • Latham, P.S., Kashgarian, M. 1979. The ultrastructural localization of transport ATPase in the rat liver at non-bile canalicular plasma membrane.Gastroenterology 76:988–996

    PubMed  Google Scholar 

  • Layden, T.J., Elias, E., Boyer, J.L. 1978. Bile formation in the rat.J. Clin. Invest. 62:1375–1385

    PubMed  Google Scholar 

  • Loewenstein, W.R. 1979. Functional intercellular communication and the control of growth.Biochim. Biophys. Acta 560:1–65

    PubMed  Google Scholar 

  • Meyer, D.J., Yancey, S.B., Revel, J.P. 1981. Intercellular communication in normal and regenerating rat liver: A quantitative analysis.J. Cell Biol. 91:505–523

    PubMed  Google Scholar 

  • Oberleithner, H., Schmidt, B., Dietl, P. 1986. Fusion of renal epithelial cells: A novel model for studying cellular mechanisms of ion transport.Proc. Natl. Acad. Sci. USA 83:3547–3551

    PubMed  Google Scholar 

  • Penn, R.D. 1966. Ionic communications between liver cells.J. Cell Biol. 29:171–174

    PubMed  Google Scholar 

  • Reverdin, E., Weingart, R. 1986. Electrical coupling studied in cell pairs isolated from adult rat liver.J. Physiol. (London) 372:46P

    Google Scholar 

  • Sackin, H., Boulpaep, E.L. 1983. Rheogenic transport in the renal proximal tubule.J. Gen. Physiol. 82:819–851

    PubMed  Google Scholar 

  • Scharschmidt, B.F., Stephens, J.E. 1981. Transport of sodium, chloride, and taurocholate by cultured rat hepatocytes.Proc. Natl. Acad. Sci USA 78:986–990

    PubMed  Google Scholar 

  • Seglen, P.O. 1976. Preparation of isolated rat liver cells.Methods Cell. Biol. 13:29–83

    PubMed  Google Scholar 

  • Spray, D.C., Ginzberg, R.D., Morales, E.A., Gatmaitan, Z., Arias, I.M. 1986. Electrophysiological properties of gap junctions between dissociated pairs of rat hepatocytes.J. Cell Biol. 103:135–144

    PubMed  Google Scholar 

  • Thomas, R.C., Cohen, C.J. 1981. A liquid ion-exchanger alternative to KCl for filling intracellular reference microelectrodes.Pfluegers Arch. 390:96–98

    Google Scholar 

  • Trifaro, J.M., Poisner, A.M. 1985. Electrophysiological properties of secretory cells: On an overview.In: The Electrophysiology of the Secretory Cell. A.M. Poisner and J.M. Trifaro, editors. pp. 269–302. Elsevier, Amsterdam

    Google Scholar 

  • Van Dyke, R.W., Scharschmidt, B.F. 1983. (Na, K)-ATPase mediated cation pumping in cultured rat hepatocytes.J. Biol. Chem. 258:12,912–12,919

    Google Scholar 

  • Van Dyke, R.W., Stephens, J.E., Scharschmidt, B.F. 1982. Effect of ion substitution on bile formation by the isolated perfused rat liver.J. Clin. Invest. 70:505–517

    PubMed  Google Scholar 

  • Wanson, J.-C., Drochmans, P., Mosselmans, R., Rouveaux, M.-F. 1977. Adult rat hepatocytes in primary monolayer culture.J. Cell Biol. 74:858–877

    PubMed  Google Scholar 

  • Weibel, E.R., Staubli, W., Gnagi, H.R., Hess, F.A. 1969. Correlated morphometric and biochemical studies on the rat liver.J. Cell Biol. 42:68–91

    PubMed  Google Scholar 

  • Wondergem, R., Harder, D.R., 1980. Membrane potential measurements during rat liver regeneration.J. Cell. Physiol. 102:193–197

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, J., Henderson, R.M., Krumpholz, B. et al. Cell membrane and transepithelial voltages and resistances in isolated rat hepatocyte couplets. J. Membrain Biol. 95, 241–254 (1987). https://doi.org/10.1007/BF01869486

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869486

Key Words

Navigation